

BENGALURU CITY UNIVERSITY

CHOICE BASED CREDIT SYSTEM (Semester Scheme with Multiple Entry and Exit Options for Under Graduate Course)

> Syllabus for Botany (V & VI Semester)

> > 2023-24

Proceedings of the meeting of BoS (UG) in Botany held on 29th & 30th August 2023 at the Department of Biochemistry, Central College Campus, Bangalore City University, Bengaluru – 560 001

Venue: Department of Biochemistry, Central College Campus, Bangalore City University, Bengaluru - 560 001

Date: 30/08/2023

Time: 11:00 AM

Agenda:

- To finalize the syllabus for V and VI Semester B.Sc. Botany (UG) (CBCS) NEP-2020 for approval.
- 2. To approve the panel of examiners recommended for the examinations of 2023-24.
- 3. To recommend and approve the constitution of BoE for the academic year 2023-24.

Members Present

1. Smt. Zaiba Nishanth Banu

2. Dr. Mallikarjuna P.B.

3. Dr. B. L. Manjula

4. Smt. K. R. Kavitha

5. Smt. Chandrakala S

6. Smt. K.S. Shailaja

7. Dr. L. Rajanna

Members Absent

1. Dr. Jenifer Lolitha

2. Smt. N. Sarvamangala

Signature

Member Member Member Member Member

ABSENT

Member Member

Chairman

1

MINUTES OF THE MEETING OF BoS (UG) IN BOTANY

Chairman welcomed the members of the BoS (UG) to the meeting and the agenda was placed for discussion.

- a). Discussed and finalized the syllabus for theory and practical of V and VI Semester B.Sc., Botany (CBCS), question paper pattern, blue print of question paper Formative assessment and Scheme of valuation for NEP programme to be implemented from the academic year 2023-24.
- b). The panel of Examiners was approved and recommended for UG Examination for the academic year 2023-24.
- c). Recommendations were made to constitute BoE for the academic year 2023-24.
- d). The Chairman was authorized to change / incorporate the corrections as per the directions of Bangalore City University.

The meeting ended with a vote of thanks by the Chairman. Dr. B. L. Manjula, Associate Professor, STRC - Imargil Race course 200, Bluen Smt Chandrapale Shivakumar, stest Professor, STRCW, Rajaji nopar, Blowle Zarba Nuhath Bano Assocrate Professor, Vijorya College RVRd - Zakh fl Dr. K.R. Kavitha. Professor, Norupathunga Univ. B'Hte-I Dr. K.R. Kavitha. Professor, Norupathunga Univ. B'Hte-I Dr. P.B. Mallikarjung, Professor, GFGC Yelahamka BE Meri 2015 RAJANNA Professor Chourman Bos (UG) pt. of Botany alore University BCU

Karnataka State Higher Education Council BOTANY Syllabus Framing Committee

Sl No	Name	Designation	Signature
1.	Prof. G R Naik,		
	Vice Chancellor,	Chairman	
	Garden City University, Bengaluru		
2.	Dr. A. H. Rajasab,		
	Pro Vice Chancellor,	Member	
	KNB University, Kalaburagi		
3.	Dr. G.R. Janardhana,		
	Professor,	Member	
	University of Mysore, Mysuru		
4.	Dr. L. Rajanna,		
	Professor,	Member	
	Bangalore University, Bengaluru		
5.	Dr. Y. L. Krishnamurthy		
	Professor, Kuvempu University,	Member	
	Shivamogga		
6.	Dr. K. Kotresha Professor,		
	Karnataka Science College,	Member	
	Karnatak University, Dharwad		
7.	Dr. Govindappa M,		
	Professor,	Member	
	Davangere University, Davangare		
8.	Shri. M. N. Mallikarjunaiah,		
	Associate Professor,	Member	
	Mandya University, Mandya		
9.	Dr. Abdul Khayum,		
	Associate Professor,	Member	
	Government Women's College, Kolar		
10.	Dr. P. Sharanappa		
	Professor, Hassan University,	Member	
	Hassan		
11.	Dr. Mamtha,		
	Associate Professor,	Member	
	Government First Grade College, Bengaluru		
12.	Dr. Lathadevi Karikal,		
	Associate Professor,	Member	
	Sharanabasaveshwara University,		
10	Kalaburagi		
13.	Dr. Kıran Kumar S.		
	Associate Professor,	Member	
	Garden City University, Bengaluru		
14.	Smt. Akshata Chandra		
	Special Officer	Member	
	Karnataka State Higher Education Council	convener	

	COURSE PATTERN AND SCHEME OF EXAMINATION FOR B.SC. / B.SC. (HONS.) AS PER NEP (2023-24 ONWARDS)															
					SU	BJECT	C: BOT A	NY								
				د Hours/Week			Examinat	ion pat Mark	tern Ma s/Paper	Duration of exam (hours)			Credits			
	er		JOE				Theory			Practical				/ b		
Sl. No	Semest	Title Of The Paper	Teaching H	Theory	Practical	Max.	Min.	IA	Max.	Min.	IA	Theory	Practical	Total marks	Theory	Practical
		CORE SUBJECT	56	4	4	60	21	40	25	09	25	2 ¹ /2	4	150	4	2
1	V	CORE SUBJECT	56	4	4	60	21	40	25	09	25	2 ¹ /2	4	150	4	2
		SKILL ENHANCEMENT COURSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		CORE SUBJECT	56	4	4	60	21	40	25	09	25	2 ¹ /2	4	150	4	2
2	VI	CORE SUBJECT	56	4	4	60	21	40	25	09	25	2 ¹ /2	4	150	4	2
		SKILL ENHANCEMENT COURSE	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Government of Karnataka

BOTANY Curriculum

B. Sc. BOTANY – V Semester

Plant Morphology and Taxonomy (Theory)

Program Name B.Sc. in BOTANY				Semester	V			
Course Title	Plant Mor	Plant Morphology and Taxonomy (Theory)						
Course Code: DSC – BOT-C9 - T		с-С9 - Т		No. of Credits	04			
Contact hours	56 Hours			Duration of SEA/Exam	2 ¹ / ₂ hours			
Formative Assess	ment Marks	40	Sum Mar	mative Assessment ks	60			

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- CO1. Understanding the main features in Angiosperm evolution
- CO2. Ability to identify, classify and describe a plant in scientific terms, thereby, Identification of plants using dichotomous keys. Skill development in identification and classification of flowering plants.
- CO3. Interpret the rules of ICN in botanical nomenclature.
- CO4. Classify Plant Systematic and recognize the importance of herbarium and Virtual Herbarium, Evaluate the Important herbaria and botanical gardens

CO5. Recognition of locally available angiosperm families and plants and economically important plants. Appreciation of human activities in conservation of useful plants from the past to the present.

Contents	56 Hrs
Unit 1:	14 hrs
Morphology of Root, Stem and Leaf. Their modifications for various functions.	
Inflorescence – types. Fruits-types. Structure of Flower - Floral diagram and floral	
formula.	
Introduction to Taxonomy: History, objectives, scope and relevance of Taxonomy	
Systems of classification: Artificial, Natural and Phylogenetic; brief account of	
Linnaeus', Bentham & Hooker's, Engler and Prantl's system and APG IV System (2016)	
- Merits and demerits of classifications.	
Taxonomic literature: Floras, Monographs and Journals.	
Herbaria and Botanical gardens: Important herbaria and botanical gardens of the world	
(Royal Botanical Garden, Kew, England) and India (National Botanical Garden, Calcutta).	
Role of botanical gardens. Technique of Herbarium Preparation	
Virtual herbarium: E-flora; Documentation.	

Unit 2:	14 hrs
Plant identification: Taxonomic dichotomous keys; intended (yolked) and bracketed	
keys. (Brief account only).	1
Plant descriptions: Common Terminologies used for description of vegetative and	1
reproductive parts of the following families	
Study of the diagnostic features of Angiosperm families: Annonaceae, Brassicaceae,	I
Rutaceae, Fabaceae (Papilionoideae, Ceasalpinoideae and Mimosaideae), Cucurbitaceae,	I
Apiaceae, Rubiaceae, Asteraceae, Lamiaceae, Euphorbiaceae, Orchidaceae,	1
Commelinaceae, and Poaceae.	1
Plant Taxonomic Evidences: from palynology, embryology, cytology, phytochemistry	1
and molecular data.	
Unit 3:	14 hrs
Taxonomic Hierarchy: Concept of taxa (family, genus, species); Categories and	
taxonomic hierarchy; Species concepts (biological, morphological and	1
evolutionary). Rank less system of phylogenetic systematics	
Botanical Nomenclature: Principles and rules (ICN); Latest code -brief account, Brief	I
account of Ranks of taxa, Type concept (Typification), Rule of priority, effective and valid	I
publication, Author citation., rejection of names, Nomenclature of hybrids/cultivated	1
species.	1
Unit 4:	14 hrs
Biometrics, Numerical Taxonomy; Phenetics and Cladistics: Characters; Variations;	
OTUs, character weighting and coding; Cluster analysis; Phenograms, cladograms	1
(definitions and differences).	
Phylogenetic Systematics: Terms and concepts (primitive and advanced, homology and	1
analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly, clades,	I
synapomorphy, symplesiomorphy, apomorphy, lineage sorting, serial homology etc.).	I
Origin and evolution of angiosperms; Co-evolution of angiosperms and animals;	1
Methods of illustrating evolutionary relationship (phylogenetic tree, cladogram).	
Molecular taxonomy: DNA sequences of chloroplast gene (rbcL)	1

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program		Program Outcomes (POs)													
Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Pedagogy: Teaching and learning, Seminar, Assignments

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Attendance	10			
Test	10			
Assignments	10			
Seminar	10			
Total	40 Marks			
Formative Assessment as per NEP guideli	ines are compulsory			

B. Sc. BOTANY – V Semester Plant Morphology and Taxonomy (Practical)

Program Name	B. Sc. i	n BOTANY	Semester	V	
Course Title	Plant (Pract	Practical Credits	02		
Course Code	DSC –	BOT - C10 - P		Contact Hours	52 Hours
Formative Asse	essment	25 Marks	Summ	ative Assessment	25 Marks

Practical Content

1. Study of root, stem and leaf structure and modifications. Study of inflorescence types. Study o flower and its parts, Study of fruits. Floral diagram and floral formula.

08 hrs

2. Study of families mentioned in theory preferably two examples from each family and make suitable diagrams, describe them in technical terms (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification) and identify up to species using the flora.

28 hrs

3. Identify plants/plant products of economic importance belonging to the families mentioned in the syllabus; with binomial, family and morphology of useful parts. Red gram, Green gram, Horse gram, Black gram, Bengal gram, Indigo, Tamarind, Bitter gourd, *Luffa*, Asafoetida, Cumin, Coriander, Coffee, Rubber, Tapioca, Ricinus, Rice, Wheat, Ragi, Sugarcane, *Annona muricata, Ruta graveolens*, Mustard and *Leucas aspera*

16 hrs.

4. Field visit: Local or outside area/ Botanical garden/ tribal settlements minimum 1 to 3 days.
5. Submission: Record book, Tour report and Herbarium (Preparation of 10 properly identified herbarium specimens; mounting of a properly dried and pressed specimen of any common plants from your locality with herbarium label).

Pedagogy: Teaching and learning, conducting experiments, field visits and Identification skills

Formative Assessment for Practical				
Assessment Occasion/ type	Marks			
Attendance	05			
Test	10			
Field visit (3 marks) and tour report (2 marks)	05			
Submission (Economic Botany)	05			
Total	25 Marks			
Formative Assessment as per NEP guidelines are compulsory				

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with $2^{1/2}$ hours duration)

Part-A	
1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B 2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions:	30 marks
(Minimum 1 question from each unit and 10 marks question may have sub-questions 5+5 if necessary)	s for 7+3 or 6+4 or
Total	l: 60 Marks
Note: Proportionate weightage shall be given to each unit based on number of h	ours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the Semester end examination

Time: 4 hours

Max. Marks: 25

1. Identify, classify and describe the specimen A & B taxonomically	6 Marks
2. Identify the given specimen C with technical description.	4 Marks
3. Draw the floral diagram and write the floral formula of the given specimen D	2 Marks
4. Identification of Specimen E, F and G	6 Marks
5. Submission (Herbarium)	2 Marks
6. Submission (Record)	5 Marks

General instructions:

- Q1. Specimen from Dicotyledons (A) and Monocotyledons (B)
- Q2. Specimen from family they studied (C)
- Q3. Specimen from family they studied (D)
- Q4. Specimen/materials from Root/Stem/ Leaf/ Inflorescence (E), Fruit (F) and Economic importance (G)
- Q5. Submission of 4 herbarium
- Q6. Submission (Record)

Refe	erences
1	Baker. H.G. 1970. Plant and Civilization, Wadsworth Publishing Company.
2	Datta S C, Systematic Botany, 4th Ed, Wiley Estern Ltd., New Delhi, 1988.
3	Eames A. J Morphology of Angiosperms - Mc Graw Hill, New York.
4	Hall, B.G. (2011). Phylogenetic Trees Made Easy: A How-To Manual. Sinauer Associates, Inc.
	USA
5	Heywood - Plant taxonomy - Edward Arnold London.
6	Jeffrey C .J. and A. Churchil - An introduction to taxonomy – London.
7	Jeffrey, C. (1982). An Introduction to <i>Plant Taxonomy</i> . Cambridge University Press, Cambridge
8	Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F., Donogue, M.J., 2002. <i>Plant Systematics: A Phylogenetic approach</i> , 2nd edition. Sinauer Associates, Inc., USA.
9	Lawrence - Taxonomy of Vascular Plants - Oxford & I B H, New Delhi.
10	Manilal, K.S. and M.S. Muktesh Kumar 1998. <i>A Handbook on Taxonomy Training</i> . DST, New Delhi.
11	Manilal, K.S. and A.K. Pandey, 1996. <i>Taxonomy and Plant Conservation</i> . C.B.S. Publishers & Distributors, New Delhi.
12	Manilal, K.S. 2003. <i>Van Rheede'sHortusMalabaricus. English Edition</i> , with Annotations andModern Botanical Nomenclature. (12 Vols.) University of Kerala, Trivandrum.
13	Naik V.N., Taxonomy of Angiosperms, 1991. Tata Mcgraw-Hill Pub. Co. Ltd., New Delhi.
14	Pandey, S. N, and S.P. Misra (2008)-Taxonomy of Angiosperms- Ane Books India, New Delhi.
15	Radford A B, W C Dickison, J M Massey & C R Bell, <i>Vascular Plant Systematics</i> , 1974, Harper & Row Publishers, New York.
16	Singh G.2012. Plant systematics: Theory and Practice. Oxford and IBH, Pvt. Ltd., New Delhi.
17	Singh V. & Jain - Taxonomy of Angiosperms - Rastogi Publications, Meerut.
18	Sivarajan V. V - Introduction to Principles of taxonomy - Oxford &I B H New Delhi.
19	Any local/state/regional flora published by BSI or any other agency.

B. Sc. BOTANY – V Semester Genetics and Plant Breeding (Theory)

Program Name	B.Sc. in BOT	ANY	Semester	V				
Course Title	Genetics	netics and Plant Breeding (Theory)						
Course Code:	DSC – BOT-	C11 - T	No. of Credits	04				
Contact hours	56 Hours		Duration of SEA/Exam	$2^{1/2}$ hours				
Formative Asses	sment Marks	40	Summative Assessment Marks	60				

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:.

CO1.Understanding the basics of genetics and plant breeding

CO2.Abilitytoidentify, calculate and describe crossing over, allelic generations and frequencies of recombination.

CO3.Interpret theresults of mating and pollinations.

CO4.ClassifyPlantpollination methods

CO5.Recognition of modes of inheritance of traits/ phenotypes and Phenotype-genotype correlation.

Unit 1:	l4 hrs
Mendelian genetics – Introduction, History, Laws and concepts Non-Mendelian genetics - Allelic (Incomplete Dominance and Co-dominance) and non-allelic gene interactions (complementary, supplementary factors, dominant and recessive epistasis) and Multiple alleles. Extra chromosomal inheritance Chloroplast mutation: variegation in Four o'clock plant; Mitochondrial mutations in yeast.	
Unit 2: 1	l4 hrs
Linkage, crossing over and chromosome mapping Linkage and crossing over - Cytological basis of crossing over; Recombination frequency, two factor and three factor crosses; Interference and coincidence; Sex Determination in plants - <i>Melandrium</i> Variation in chromosome number and structure Gene mutations –Types, Molecular basis of Mutations; Mutagens – physical and chemical (Base analogs, deaminating, alkylating and intercalating agents); Detection of mutations Fine structure of gene Population Genetics - Allele frequencies, Genotype frequencies, Hardy-Weinberg Law, role of natural selection and mutation	

Unit 3:	14 hrs
Plant Breeding: Introduction and objectives. Breeding systems: modes of reproduction	
in crop plants. Important achievements and undesirable consequences of plant breeding.	
Methods of crop improvement - Plant introduction, primary and secondary	
Plant genetic resources - Acclimatization	
Selection methods: For self-pollinating and cross pollinating crops	
Types of vegetative propagation in plants	
Hybridization – Types, Procedure, advantages and limitations.	
Unit4:	14 hrs
Quantitative inheritance: Concept, mechanism, examples of inheritance of Kernel	
colour in Wheat, Monogenic vs Polygenic inheritance.	
Inbreeding depression and heterosis History, genetic basis of inbreeding depression and	
heterosis; Applications.	
Crop improvement and breeding: Role of mutations, Polyploidy, Distant hybridization	
and role of biotechnology in crop improvement.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program			Pro	gra	m	Ou	tco	mes	s (P	Os)			
Outcomes (POs)		8	9	10	11	12	13	14	15				

Pedagogy: Teaching and learning, Seminar, Assignments and skills of Hybridization

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Attendance	10			
Test	10			
Assignments	10			
Seminar	10			
Total	40 Marks			
Formative Assessment as per NEP guidelines are compulsory				

B. Sc. BOTANY – V Semester Genetics and Plant Breeding (Practical)

Course Title	Genetics and Plant Breeding (Practical)	Practical Credits	02		
Course Code	DSC – BOT – C12 - P	Contact Hours	52 Hours		
Formative Assessment	25 Marks	Summative Assessment	25 Marks		
	Practical Content				
 Plant breeding: 1. Reproductive biology of self and cross pollinating plants 2. Vegetative reproduction – Cutting, Budding, , grafting and layering 3. Hybridization: Emasculation, bagging, pollination and production of hybrids 4. Pollen fertility – Tetrazolium test 					
 6. Mendel's laws through seed ratios (monohybrid and dihybrid crosses) 7. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1, 13:3). 8. Incomplete dominance and gene interaction through seed ratios (15:1, 12:3:1, 9:3:4). 9. Study of aneuploidy: Down's, Klinefelter's and Turner's syndromes (Photocopies). 					

10. Photographs showing Translocation Ring, Laggards and Inversion Bridge.

Pedagogy: Teaching and learning, conducting experiments, field / Lab.visits

Formative Assessment for Practical				
Assessment Occasion/type	Marks			
Attendance	05			
Test	10			
Submission of solved problems	05			
Submission of potted plant/Vegetative propagation	05			
Total	25 Marks			
Formative Assessment as per NEP guidelines are o	compulsory			

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with $2^{1/2}$ hrs duration)

Part-A	
1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B	
2. Question number 07- 11 carries 05 Marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 Marks each. Answer any 03 questions:	30 marks

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the Semester end examination

Time: 4 hours

Max. Marks: 25

1. Perform the emasculation / pollen viability / fertility of the given sample A	5 Marks
2. Solve the genetic problem B	4 Marks
3. Identification of specimen/ Photographs C, D and E	6 Marks
4. Viva Voce	5 Marks
5. Submission (Record)	5 Marks

General instructions:

- Q1 Material Cassia / Hibiscus/ etc., (A)
- Q2. Genetic problem (B)
- Q3. Down's, Klinefelter's and Turner's syndromes any one for C, Translocation Ring, Laggards and Inversion Bridge any one for D and vegetative propagation for E
- Q4. Viva voce
- Q5. Submission (Record)

Refer	rences
1	Acquaah, G. (2007). Principles of Plant Genetics & Breeding.NewJearsey, U.S.: Blackwell Publishing.
2	Singh, B.D. (2005). Plant Breeding: Principles and Methods, 7th edition. New Delhi, Delhi: Kalyani Publishers.
3	Chaudhari, H.K. (1984). Elementary Principles of Plant Breeding, 2nd edition. New Delhi, Delhi: Oxford – IBH.
4	Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, 8th edition. New Delhi, Delhi: John Wiley & sons
5	Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis, 10th edition. New York, NY: W.H. Freeman and Co.
6	Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics, 10th edition. San Francisco, California: Benjamin Cummings
7	Raven, F.H., Evert, R. F., Eichhorn, S.E. (1992).Biology of Plants. New York, NY: W.H. Freeman and Co.
8	Welsh, J. R. (1981). Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.
9	Poehlman, J.M. (1987). Breeding Field Crops, 3rd Ed. AVI Publishing Co. Inc., Westport, Connecticut
10	Chopra, V.L. (2000). Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi.

B. Sc. BOTANY – VI Semester CELL AND MOLOECULAR BIOLOGY (THEORY)

Program Name	B.Sc. in BOTANY	Semester	VI
Course Title	Cell and Molecu	ılar Biology (Theory)	
Course Code:	DSC-BOT- C13-T	No. of Credits	04
Contact hours	56 Hours	Duration of SEA/Exam	$2^{1/2}$ hours
Formative Assessment Marks	40	Summative Assessment Marks	60

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- CO5. Understanding of Cell metabolism, chemical composition, physiochemical and functional organization of organelles.
- CO6. Contemporary approaches in modern cell and molecular biology.
- CO7. To study the organization of the cell, cell organelles and biomolecules (i.e. Protein, carbohydrate, lipid and nucleic acid).
- CO8. To gain knowledge on the activities in which the diverse macromolecule and microscopic structures inhibiting the cellular world of life are engaged.
- CO9. To understand the various metabolic processes such as respiration, photosynthesis etc., which are important for life.

Contents	56 Hrs
UNIT 1	14 hrs
Plant cell – Ultrastructure and its components	
Cell wall – Types, composition and functions	
Biological membranes – Types, composition and transport (Plasma membrane, nuclear	
membrane and E R membrane)	
Plant cell organelles - Structure and function (Nucleus, Vacuole, mitochondrion and	
chloroplast)	
Cytoskeleton	
UNIT 2	14 hrs
Chromosome Biology – Types and structural organization of eukaryotic chromosomes	
(up to nucleosome model)	
Types of Chromosomes – Normal, giant and supernumerary chromosomes	
Cell cycle – Phases of eukaryotic cell cycle, check points and role of protein kinases	
Cell division – Mitosis and meiosis and its significance	
Karyotype – Types and significance.	
Programmed cell death (PCD).	
UNIT 3	14 hrs
Molecular Biology – Historical perspectives, DNA is the genetic material (Griffith's,	
Harshey and Chase experiments)	
Nucleic acids – DNA structure, composition, types and the mechanism of replication	
A brief account of DNA repair mechanism	
RNA – Structure, composition and types	
Central dogma of Molecular biology, genetic code – Salient features	
Gene expression in prokaryotes (Transcription and translation)	

UNIT 4	14 hrs
Gene concept, Genomics and proteomics	
Gene regulation- Lac operon concept	
Epigenetics – Gene editing, DNA methylation, Sn/mi RNAs and Ribozymes	
Genomic organization in Eukaryotes	
Recombinant DNA technology – A brief account	
Introduction to Bioinformatics and its applications	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program	Program Outcomes (POs)														
Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Core competency															
Critical thinking															
Analytical reasoning															
Research skill															
Team work															

Formative Assessment for Theory									
Assessment Occasion/type	Marks								
Attendance	10 Marks								
Test	10 Marks								
Assignments	10 Marks								
Seminar	10 Marks								
Total	40 Marks								

Pedagogy: Teaching, learning seminar and assignment skills

B. Sc. BOTANY – VI Semester CELL AND MOLOECULAR BIOLOGY (Practical)

Course Title	Colla	nd Molecular Biology (P	Practical	1				
Course Thie	Cell a	ind Molecular Blology (P	Credits	2				
Course Code	DSC-E	BOT - C14-P		Contact Hours	52 Hours			
Formative		25 Marks	Summative	Assessment	25 Marks			
Assessment			Summative	4556551110111				
		Practical Con	ntent					
1. Study of pla	nt cell st	tructure with the help of epider	mal peel mou	nt of Onion/Rhoed	o/			
Crinum								
2. Study of cel	l and its	organelles with the help of ele	ctron microgra	aphs				
3. Study of dif	ferent st	ages of mitosis and meiosis (O	nion/Rhoeo/C	rinum)				
4. Study of Ka	ryotype	using Camera Lucida/chart						
5. Salivary gla	nd chror	nosome						
6. Isolation of cell organelle – Chloroplast								
7. Molecular	Biology	- Isolation of DNA by CTAB	method (Cauli	flower)				
8. Estimation	of RNA	- by Orcinol method						

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with $2^{1/2}$ hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks	
Part-B 2. Question number 07- 11 carries 05 marks each. Answer any 04 questions:	20 marks	
Part-C 3. Question number 12-15 carries 10 marks each. Answer any 03 questions:	30 marks	

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

(Distribution of marks): 25 marks for the semester end examination

Cell and Molecular Biology

Time: 04 Hours

Max. Marks: 25

1.	Preparation of squash/smear of material A, Identify, sk	etch and label any two
	stages with reasons	06 marks
2.	Isolation of DNA/Estimation of RNA of material B	06 marks
3.	Identify the slides C and D	04 marks
4.	Viva-voce	03 marks
5.	Submission (Record $+ 4$ slides) (4 $+ 2$)	06 marks

General instructions:

- Q1. Onion/Rhoeo/ Crinum plant (A)
- **Q2.** Cauliflower/RNA sample (**B**)
- Q3. Slides from Mitosis or meiosis (C) and Karyotype/Salivary gland chromosome (D)
- Q4. Viva-voce
- **Q5.** Submission (Record + 4 Slides)

Pedagogy: Teaching and learning, Seminar, Assignments, etc

Formative Assessment for Practical									
Assessment	Marks								
Attendance	05 Marks								
Test	15 Marks								
viva	05 Marks								
Total	25 Marks								

	References
1	1. Cooper, G.M., Hausman, R.E. (2009). The Cell: A Molecular Approach, 5th edition. Washington
	DC: ASM Press & Sunderland, Sinauer Associates, MA
	2. Karp. G. (2010). Cell Biology, 6th edition. New Jersey, U.S.A John Wiley & Sons.
	3. De Robertis, E. D. P. and De Robertis R. E. 2009. Cell and Molecular Biology, 8th edition.
	Lippincott Williams and Wilkins, Philadelphia.
	4. Becker W. M., Kleinsmith LJ, and Bertni G. P. 2009. The World of the Cell. 7th edition. Pearson
	Benjamin Cummings Publishing, San fransisco.
	5. Reven, F.H., Evert, R.F., Eichhorn, S.E. (1992). Biology of Plants. New York, NY: W.H. Freeman
	and Company
	6. Alberts, B., Bray, D., Hopkin, K., Johnson, A. D., Lewis, J., Raff, M., Roberts, K., & Walter, P.
	(2013). Essential cell biology (4th ed.). Garland Publishing.
	7. Raven, F.H., Evert, R. F., Eichhorn, S.E. (1992). Biology of Plants. New York, NY: W.H. Freeman
	and Co.
	8. Verma, P. S. (2004). Cell Biology, Genetics, Molecular Biology: Evolution and Ecology, India: S.
	Chand Limited.

B. Sc. BOTANY – VI Semester PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY (THEORY)

Program Name	B. Sc. in BOTANY	Semester	VI						
Course Title	Plant Physiology a	lant Physiology and Plant Biochemistry (T							
Course Code:	DSC-BOT-C15-T	No. of Credits	04						
Contact hours	56 Hours	Duration of SEA/ Exam	$2^{1/2}$ hours						
Formative Assessment	40	Summative Assessment	60						
Marks	40	Marks	UU						

Course Pre-requisite (s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

CO1. Importance of water and the mechanism of transport.

CO2. To understand biosynthesis and breakdown of biomolecules.

CO3. Role of plant hormones in plant development and about secondary metabolites.

CO4. Preliminary understanding of the basic functions and metabolism in a plant body.

CO5. To understand the importance of nutrients in plant metabolism and crop yield.

Contents	56 Hrs
UNIT 1	14 hrs
Plant water relations: Importance of Water as a solvent, Diffusion, osmosis, imbibition,	
osmotic potential, turgor pressure, wall pressure, water potential and its components.	
Mechanism of water absorption, Factors affecting water absorption.	
Transpiration: Types, Stomatal apparatus and mechanism of stomatal movement.	
Antitranspirants.	
Mechanism of ascent of sap: Vital and physical force theories.	
Phloem Transport: Transport of organic solutes. Path of transport, vein loading and	
unloading. Transcellular hypothesis and mass flow hypothesis.	
Mineral nutrition: A brief account on Micro and macro nutrients.	
UNIT 2	14 hrs
Photosynthesis: Photosynthetic pigments (Chl a, b, Xanthophylls and Carotene)	
Photosystem I and II, reaction center, antenna molecules; Electron transport and	
mechanism of ATP synthesis; C3, C4 and CAM pathways of carbon fixation;	
Photorespiration.	
Respiration : Glycolysis, TCA cycle; Oxidative phosphorylation and Anaerobic respiration	
Nitrogen metabolism: Biological nitrogen fixation: Nitrate and ammonia assimilation.	
UNIT 3	14 hrs
Definition and classification of plant growth regulators – Hormones, site of synthesis,	
and influence on plant growth and development of individual group of hormones -	
Auxins, Gibberellins, cytokinins, ABA and ethylene	
Synthetic growth regulators - Classification, their effect on plant growth and	
development. Practical utility in agriculture and horticulture.	
Sensory Photobiology - Biological clocks, photoperiodism, function & structure of	
phytochromes, phototropin and cryptochrome.	
Senescence - Aging and Cell Death (PCD and Autophagosis).	
Plant Movements – Tropisms	

	14 hrs
UNIT 4	14 Nrs
Carbohydrate metabolism – Cellulose and starch – structure and function.	
Enzymes - Classification, kinetics and mechanism of action.	
Proteins - Classification, structure - primary, secondary, tertiary and quaternary.	
Amino acids – A brief account.	
Vitamins - Classification, distribution and function.	
Lipids - Classification, structure and function of fatty acids.	
Secondary plant products: Distribution of terpenes, phenolics and nitrogen containing	
compounds and their role in plants	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program	Program Outcomes (POs)														
Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Core competency															
Critical thinking															
Analytical reasoning															
Research skill															
Team work															

Formative Assessment for Theory paper DSC-BOT- C17-T

Assessment	Marks
Attendance	10 Marks
Test	10 Marks
Seminar	10 Marks
Assignment	10 Marks
Total	40 Marks

Pedagogy: Teaching, learning, Assignments, Practical and Seminar skills

B. Sc. BOTANY – VI Semester PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY (Practical)

Course Title Plant Physiology and Biochemistry(Practical)		Practical Credits	2		
Course Code DSC-BOT- C16-P		Contact Hours	52 Hours		
Formative	e 25 Marks Summative		Summetive	Accessment	25 Marks
Assessment			Summative	Assessment	
Practical Content/Experiments					
1. Conduct the	e experim	ent to demonstrate the pheno	menon of exosn	nosis and endosmo	osis.
2. Determine the osmotic pressure of the cell sap by plasmolytic method.					
3. Demonstrate root pressure / transpiration pull in plants.					
4. Compare the rate of transpiration from the two surfaces of leaf by cobalt chloride paper method.					
5. Demonstrate that oxygen is liberated in the process of photosynthesis.					
6. Separation of photosynthetic pigments by paper chromatography and measure their Rf values.					
7. Separate the chloroplast pignments by Arnon method.					
8. Isolate and identify the amino acids from a mixture using paper chromatography.					
9. Study of Phototropism.					
10. Qualitative tests for Starch, Protein, Reducing Sugars and Lipids.					
11. Estimation of TAN (Titratable acid Number) from Bryophllum leaves/Aloe vera.					
12. Visit to Research Institute/Scientific laboratory.					

Formative Assessment for Practical		
Assessment	Marks	
Attendance	05 Marks	
Test	10 Marks	
Project report and Industrial visit $(5+5)$	10 Marks	
Total	25 Marks	

GENERAL PATTERN OF THEORY QUESTION PAPER

(60 marks for semester end Examination with $2^{1}/2$ Hours duration)

Part-A	
1. Question number 1-06 carries 2 marks each. Answer any 05 questions:	10 marks
Part-B	
2. Question number 07-11 carries 05 marks each. Answer any 04 questions:	20 marks
Part-C	
3. Question number 12-15 carries 10 marks each. Answer any 03 questions:	30 marks

(Minimum 1 question from each unit and 10 marks question may have sub-questions for 7+3 or 6+4 or 5+5 if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

SCHEME OF PRACTICAL EXAMINATION

PLANT PHYSIOLOGY AND PLANT BIOCHEMISTRY

Time: 04 Hours

Max. Marks: 25

1. Conduct Major Experiment A.		06 marks
2. Comment on minor Experiments B & C.	(3 + 3)	06 marks
3. Perform biochemical test of sample D .		04 marks
4. Viva-voce		04 marks
5. Practical Record		05 marks

General Instructions:

Q1. Osmotic potential/paper chromatographic separation of pigments (A)

Q2. CoCl₂/O₂ evolution/Root pressure/transpiration pull experiments (**B & C**)

- Q3. Qualitative tests for Starch, Protein, Reducing Sugars and Lipids (D)
- Q4. Viva-voce
- Q5. Practical record

Pedagogy: Teaching and learning, Seminar, Assignments, etc

REFERENCES

- 1. Fundamentals of Biochemistry 2nd Ed, John Wiley and Sons Inc. Wilson, K. and Walker, J. 1994
- 2 .JainV K, 2008. Fundamentals of Plant Physiology.S Chand andCo.
- 3. Kochhar P L, Krishnamoorthy H N. Plant Physiology. Atmaram and sons, Delhi.
- 4. Kumar and Purohit. Plant Physiology: Fundementals and Applications. Agrobotanical Publishers.
- 5. Malik CP, 2002. Plant Physiology. Kalyani publishers.
- 6. Mukherjii S, Ghosh AK, 2005. Plant Physiology. New Central Book Agency, Culcutta.
- 7. Noggle GR, Fritz GJ, Introductory Plant Physiology.Prentice Hall of India.
- 8. Pandey SN, Sinha BK, 2006. Plant physiology. Vikas Publishing House, NewDelhi.
- 9. Salisbury F B, Ross C W, 1992. Plant Physiology. CBS publishers and Distributers, NewDelhi.
- 10. Sinha A K, 2004. Modern Plant Physilogy. Narosa publishing House, NewDelhi.
- 11. Srivastava H S, 2004. Plant physiology and Biochemistry. Rasthogi publications.
- 12. Verma V, 2007. Text Book of Plant Physiology. Ane Books Pvt. Ltd.
- 13. Buchanan B B, Gruissem W and Jones R. L. 2004. Biochemistry and molecular biology of plants. I K international Pvt. Ltd.
- 14. Hopkins W G & Huner N P A 2009. Introduction to Plant |Physiology,4th edition,John Wiley.
- 15. Taiz L & Zeiger E, Max Moller I & Murphy A 2018. Fundamentals of Plant Physiology, Sinaur Associates.
- 16. Hans Walter Heldt et al., 2011. Plant Biochemistry, Academic Press.

Internship for Graduate Programme (As Per UGC & AICTE)

Course title	Internship Discipline specific
No of contact hours	90
No credits	2
Method of evaluation	Presentations/Report submission/Activity etc.,

- ◆ Internship shall be Discipline Specific of 90 hours (2 credits) with a duration 4-6 weeks.
- Internship may be full-time/part-time (full-time during semester holidays and part-time in the academic session)
- Internship mentor/supervisor shall avail work allotment during 6th semester for a maximum of 20 hours.
- The student should submit the final internship report (90 hours of Internship) to the mentor for completion of the internship.
- The detailed guidelines and formats shall be formulated by the universities separately as prescribed in accordance to UGC and AICTE guidelines.