

DCCA301

Maximum Marks : 60

III Semester B.C.A. Degree Examination, April - 2023 COMPUTER APPLICATION Operating Systems

Paper : CA - CIIT (NEP Scheme)

Time : 2½ Hours

Instructions to Candidates:

Answer all the questions.

PART-A

I. Answer any four questions. Each carries 2 marks.

- 1. Define
 - a. Process.
 - b. Thread.
- 2. What do you mean by critical section?
- 3. What is safe state?
- 4. What is page fault?
- 5. What are the various file operations?
- 6. Define Rotational latency.

PART - B

II. Answer any four questions. Each question carries 5 marks.

- 7. Explain the states of a process with a block diagram.
- 8. What is a system call? Explain its types.
- 9. Explain producer consumer problem using semaphores.

 $(4 \times 2 = 8)$

(4×5=20)

DCCA301

10. Consider the following set of process with CPU burst time and arrival time.

PID	Arrival time	Burst time (in ms)
P ₁	0	5
P ₂	1	7
P ₃	2	4
P ₄	3	2

Draw the Gantt chart illustrating the execution of the process using Round robin algorithm with a time slice of 2 ms. Find average waiting time and turn around time.

- 11. What is fragmentation? Discuss the different types of fragmentation.
- 12. Briefly explain the different types of network based operating system.

PART-C

- **III.** Answer any **four** questions. Each carries **8** marks.
 - 13. Define operating system. Explain the operating system structure with a block diagram.
 - 14. Explain necessary conditions of deadlock. Discuss the methods of handling deadlock recovery.
 - 15. Explain interprocess communication in detail.
 - 16. Consider the following page reference string.

1,3,0,5,6,3 with 3 page frames. Find the number of page faults using FIFO page replacement algorithm.

- 17. Explain disk scheduling algorithms SCAN and look with suitable graphs.
- 18. Write short notes on :
 - a. Resource Allocation graph.
 - b. Segmentation.

(4)

(4)

(4×8=32)