

	 			,			
Reg. No.		134	gais.	rich :	5.0	3.78	16

VI Semester B.C.A. Degree Examination, September - 2021 COMPUTER SCIENCE Theory of Computation (CBCS Scheme)

Time: 3 Hours

Maximum Marks: 100

Instructions to Candidates:

Answer all sections.

SECTION-A

Answer any Ten questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- 1. Define finite Automata.
- 2. Draw a DFA to accept strings of even numbers of a's.
- 3. What is pumping lemma?
- 4. State Arden's theorem.
- 5. Obtain a RE to accept the set of strings contains exactly one a over $\Sigma = \{a, b, c\}$.
- 6. Write the basic operations of Regular expressions with example.
- 7. Mention different types of Grammar.
- **8.** Mention any two Applications of CFG.
- 9. Explain parsing with an example.
- 10. Define GNF.
- 11. What is Turing Machine?
- 12. State post correspondence problem.

SECTION-B

Answer any Five questions. Each question carries 5 marks.

 $(5 \times 5 = 25)$

13. Construct a DFA to accept strings of 0's and 1'S starting with atleast two 0's and ending with atleast two 1's.

- 14. Design a NFA to accept the strings ending in 00 and check whether the string 100 is accepted by the NFA.
- 15. Construct RE from the given DFA.

- 16. Show that $L = \{WW^R / W \in (a+b)^*\}$ is not regular, W^R is reverse of the string W.
- 17. Construct a parse tree from the grammar

 $S \rightarrow aB/bA$

 $A \rightarrow a/aS/bAA$

 $B \rightarrow b/bS/aBB$

for the string W = aaabbabbba, by applying left most derivation.

- 18. Write short note on chomskey hierarchy of languages.
- 19. Reduce the following grammar to CNF

 $S \rightarrow OA/1B$

 $A \rightarrow OAA/1S/1$

 $B \rightarrow 1BB / OS/O$

20. Explain Halting problem of Turing Machine.

SECTION-C

Answer any **Three** questions. Each question carries 15 marks.

 $(3 \times 15 = 45)$

21. Convert the following NFA to its equivalent DFA.

22. Minimize the following DFA using table filling algorithm.

	S	0	1
→	A	В	F
	В	G	C
	C	A	C
	D	C	G
	Ε.	Н	F
	F	C	G
	G	G	Е
	Н	G	С

- 23. Define pushdown Automata. Obtain a PDA to accept the language $L = \{WCW^R / W \in (a+b)^*\} \text{ Where } W^R \text{ is Reverse of W.}$ (15)
- 24. Transform the CFG to GNF (15)

 $S \rightarrow AB$

 $A \rightarrow BS/1$

 $B \rightarrow SA/0$

25. Obtain a T_m that accepts all strings of form $a^n b^n$ for $n \ge 1$.

SECTION - D

Answer any One questions. Each question carries 10 marks.

 $(1 \times 10 = 10)$

(15)

- 26. Construct a NFA with \in for the RE (0+1)*.1.(0+1).
- 27. a. Eliminate all unit production from the grammar.

(5)

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow C/b$

 $C \rightarrow D$

 $D \rightarrow E$

 $E \rightarrow a$

b. Eliminate all ∈ productions from the garmmar.

(5)

 $S \rightarrow aS / AB$

 $A \rightarrow \in$

 $B \rightarrow \in$

 $D \rightarrow b$