

Reg. No.				

VI Semester B.C.A. Degree Examination, September/October - 2022

COMPUTER SCIENCE

Theory of Computation (CBCS Scheme)

Maximum Marks: 100

Time: 3 Hours

Instructions to Candidates:

Answer all sections.

SECTION - A

Answer any 10 questions. Each question carries 2 marks.

 $(10 \times 2 = 20)$

- 1. Define Automata.
- 2. Draw a DFA to accept strings of even number of a's.
- 3. What is trap state?
- 4. Define pumping Lemma?
- 5. Design a RE over $\sum = \{a, b\}$ for the language accepting string of exactly length 2?
- 6. Define E-closure.
- 7. What are the different types of grammar?
- 8. What is parsing?
- 9. Define GNF.
- 10. Define Nullable variable.
- 11. What is Turing Machine?
- 12. State post correspondance problem.

SECTION - B

Answer any 5 questions. Each question carries 5 marks.

 $(5 \times 5 = 25)$

- 13. Construct a DFA to accept strings of O's and I's representing zero modulo 5.
- 14. Write the differences between DFA and NFA.
- 15. Convert the DFA to Regular Expression.

P.T.O.

- 16. State and prove Kleene's Theorem.
- 17. Prove that $s \to a s b s/b s a s/\sum is ambigurus$.
- 18. Obtain CFG for the following language

$$L = \{a^n b^n \mid n \ge 1\}$$

- 19. Explain Halting problem of Turning Machine.
- 20. Eliminate unit production from the following grammar.

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow C$

 $B \rightarrow b$

 $C \rightarrow D$

 $D \rightarrow E$

 $E \rightarrow a$

SECTION - C

Answer any 3 questions. Each question carries 15 marks:

 $(3 \times 15 = 45)$

- 21. Construct a NFA with E for (0+1)*1(0+1).
- 22. Minimize the following DFA using table filling algorithm.

δ	a	<i>b</i> .
A	В	C
В	G	C
C	A	C
D	C	G
E	H	F
F	C	G
G	G	E
Н	G	C

23. Transform the CFG into GNF

$$S \rightarrow AB$$

$$A \rightarrow BS \mid 1$$

$$B \rightarrow SA \mid 0$$

24 a) Find the language accepted by CFG.

(5)

$$G = \{V, T, P, S\}, V = \{S\}, T = \{a, b\}$$

 $S = S, P = \{S \rightarrow aS / b\}$

b) Obtain a grammar to generate string $S = \{a, b\}$ having at least one 'a'. (5)

c) Obtain a PDA for the language

(5)

$$L = \left\{ wcw^{R} / wE(a,b)^{*} \right\}$$

25. Obtain a Turing machine that accepts the language $L = \{a^n b^n \mid n \ge 1\}$.

SECTION - D

Answer any 1 question.

 $(1 \times 10 = 10)$

- 26. Explain the types of Turning Machine
- 27. Write a note on Chomsky's Hierarchy of language.