

BENGALURU CITY UNIVERSITY

CHOICE BASED CREDIT SYSTEM (Semester Scheme with Multiple Entry and Exit Options for Under Graduate Course)

> Syllabus for B.Sc. Biotechnology (V & VI Semester)

> > 2023-24 onwards

Program Name	B.Sc.	Biotechnology		Semester		Semester 5 th S	
Course Title	Genet	Genetic Engineering (Theory + Practical)					
Course Code:	DSC ·	-A9 (T)	No. of Theory Cr	No. of Theory Credits			
Contact hours	ntact hours 60 hrs			Duration of ESA/Exam			
Formative Assessment40Marks		Summative Asses	Summative Assessment Marks				

B.Sc. Biotechnology 5th Semester

Course Objectives

- 1. Understand the fundamental principles and techniques of genetic engineering.
- 2. Explore the applications of genetic engineering in agriculture, medicine, biotechnology, and environmental science.
- 3. Develop practical skills in genetic engineering techniques and laboratory procedures.
- 4. Gain knowledge of gene expression regulation and genetic modification methods.
- 5. Enhance critical thinking and problem-solving skills through discussions and case studies.
- 6. Stay updated on emerging trends and advancements in genetic engineering.

Course Outcomes:

- 1. Demonstrate a thorough understanding of the fundamental principles and techniques of genetic engineering.
- 2. Apply the knowledge of genetic engineering to diverse applications in agriculture, medicine, biotechnology, and environmental science.
- 3. Perform laboratory procedures and develop practical skills in genetic engineering techniques.
- 4. Explain gene expression regulation mechanisms and apply genetic modification methods effectively.
- 5. Evaluate genetic engineering's ethical, social, and legal implications and propose responsible solutions.
- 6. Stay updated with recent advancements in genetic engineering, critically evaluate emerging trends, and assess their potential impact on various fields.

Genetic Engineering - Content of Theory	60 hrs
Unit I- Fundamentals of Genetic Engineering	15
Definition, scope, and historical overview of genetic engineering. Importance and ap various fields.	plications in
DNA Structure and Manipulation - Techniques for DNA isolation and purification.	Methods for
quantification and characterization of DNA samples.	
RNA Analysis and Gene Expression- Methods for RNA isolation and purification.	Analysis o
gene expression.	
Recombinant DNA technology – Introduction to molecular cloning. Overview of clo	-
Plasmids, phage, cosmid, BAC, and YAC. Features and applications of cloning vector	rs in genetic
engineering. Enzymes used in recombinant DNA technology: Restriction en	donucleases
Polymerases, Ligase, kinases, and phosphatases. Techniques for molecular cloning RNA fragments in bacterial and eukaryotic systems.	of DNA o
Unit II- Practices in Genetic Engineering	15
methods. Transformation, transfection, electroporation and micro-injection. Genetic techniques in bacterial and eukaryotic organisms. Genome Editing - Introduction to genome editing techniques- Principles and apprendent genome editing techniques. CRISPR-Cas9, site-directed mutagenesis, and other genethods.	olications o
Unit III- Applications of Genetic Engineering	15
Introduction to Applications. Overview of the diverse applications of genetic engine therapy and its potential in treating genetic disorders. Strategies for gene delivery in applications. Diagnostic Applications. DNA fingerprinting and its applications in Molecular diagnostic techniques and their role in disease diagnosis. Use of genetic en- the development of therapeutics and vaccines. Production of biopharmaceutic recombinant DNA technology.	therapeutic forensics. gineering in
Unit IV- Advances in Genetic Engineering and Ethics	1
	15

Industrial Applications. Industrial applications of genetic engineering, such as enzyme production, biofuel production, and bioremediation. Scale-up techniques and process optimization in industrial settings. Introduction to synthetic biology and its integration with genetic engineering. Design and construction of artificial biological systems

Ethical and Regulatory Considerations - Discussion of ethical implications associated with genetic engineering. Introduction to regulatory guidelines and safety considerations for genetic engineering research and applications

Summative Assessment = 60 Marks						
Formative Assessment /	Weightage in Marks					
type						
Attendance	10					
Seminar	10					
Debates and Quiz	10					
Test	10					
Total FA	40					
Total (FA + SA)	100 marks					

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Course Title	Genetic Engineeri	ng	Practical Credits	02	
Course Code:	DSC-A10 (P)	(Contact hours	60 hrs	
Practical Content		I		I	
1. Introduction to Labora	tory Techniques -	Safety guideline	es and laboratory	orotocols	
Aseptic techniques and					
operationPreparation of r	reagents and media				
2. Nucleic Acid Extraction	-				
bacteria, plant, animal). I		1	- •	sessment and	
quantification of nucleic		ometry, gel elect	rophoresis).		
3. Polymerase Chain Read					
Primer design and optimi	1		litions		
Agarose gel electrophore		t analysis			
4. Cloning and Plasmid M Isolation of Plasmid	anipulation				
Restriction enzyme diges	tion				
Ligation reactions					
Transformation of bacter	ial cells with recom	binant plasmids	1		
Colony selection and scre		1			
5. Gel Electrophoresis and	-				
Agarose gel electrophore		ent separation ar	nd analysisDNA s	ize	
determination using mole			5		
DNA band visualization			staining, DNA in	tercalating dye	
Practical Assessment					
Formative Assessment		Summative	Assessment	Total Marks	
Assessment Occasion/ type	Weightage	Practica	l Exams		
	in Marks				
Record	05				
Test	10		-		
Attendance	05	2	5	50	
Performance	05				

efer	ences
1.	Principles of Gene Manipulation and Genomics (2016) 8th ed., Primrose, SB, and Twyman, R, Wiley Blackwell, ISBN: 978-1405156660.
2.	Gene Cloning and DNA Analysis: An Introduction (2019) 7th ed., Brown, TA, Wiley Blackwell, ISBN: 978-1119072560.
3.	Genome 4 (2017) 4th ed., Brown, TA, Garland Science, ISBN: 978-0815345084.
4.	Introduction to Genomics (2015) 2nd ed., Lesk, AM, Oxford University Press India, ISBN 978-0198745891.
5.	Genomics and Personalized Medicine: What Everyone Needs to Know (2016) 1st ed., Snyder M, OUP-USA, ISBN: 978-0190234768.
6.	Molecular Biology of the Gene (2014) 7th ed., Watson, JD, Baker, TA, Bell, SP, Gann, A Levine, M, and Losick, R, Pearson, ISBN: 978-0321762436.
7.	Principles of Gene Manipulation and Genomics (2019) 9th ed., Primrose, SB, and Twyman, R Wiley Blackwell, ISBN: 978-1119163774.
8.	Genomes (2018) 4th ed., Brown, TA, Garland Science, ISBN: 978-0815345084.
	Introduction to Genomics and Proteomics (2015) 2nd ed., Burrell, MM, Wiley, ISBN: 978 0470850075.
10.	Genomics: The Science and Technology Behind the Human Genome Project (2019) 2nd ed Gibson, G, and Muse, SV, Oxford University Press, ISBN: 978-0198786207.
	Genomics and Evolution of Microbial Eukaryotes (2019) 1st ed., Katz, LA, and Bhattacharya D, Oxford University Press, ISBN: 978-0198830202.
12.	Essentials of Genomic and Personalized Medicine (2016) 2nd ed., Ginsburg, GS, and Willard HF, Academic Press, ISBN: 978-0124078652.
13.	Genomic Medicine: Principles and Practice (2014) 2nd ed., Ginsburg, GS, and Willard, HI Oxford University Press, ISBN: 978-0199334468.
14.	Genomic Medicine in Resource-limited Countries: Genomics for Every Nation (2019) 1st ed Wonkam, A, Puck, JM, and Marshall, CR, Academic Press, ISBN: 978-0128133003.
15.	Molecular Genetics and Genomics (2020) 1st ed., Krebs, JE, and Goldstein, ES, Jones & Bartlett Learning, ISBN: 978-1284154544.
16.	Bioinformatics and Functional Genomics (2015) 3rd ed., Pevsner, J, Wiley-Blackwell, ISBN 978-1118581780.
17.	Genomic Approaches for Cross-Species Extrapolation in Toxicology (2019) 1st ed., Wichard J, and Maertens, A, CRC Press, ISBN: 978-0815348023.
18.	Introduction to Genetic Analysis (2020) 12th ed., Griffiths, AJF, Wessler, SR, Carroll, SB, an Doebley, J, W.H. Freeman, ISBN: 978-1319149609.
19.	Genetic Engineering: Principles and Methods (2019) 3rd ed., Fowler, MR, CABI, ISBN: 978 1789240605.

B.Sc. Biotechnology 5th Semester

Program	B.Sc. Biotechnology	7	Semester	5 th Semester
Course Title	Plant and Animal Bio	Theory + Practical)		
Course Code: DSC-A11 (T)			No. of Theory Credits	04
Contact hours 60 hrs			Duration of ESA/Exam	3 Hours
Formative Asse	ssment Marks	40 S	Summative Assessment Mark	cs 60

Course Objectives

- 1. To understand the fundamental aspects of plant and animal biotechnology.
- 2. Learn about biotechnological tools and techniques used in plant and animal research.
- 3. Explore methods of introducing foreign genes into plants and animals through transformation techniques.
- 4. Gain practical skills in plant tissue culture and animal cell culture for improvement.
- 5. Design strategies for plant genetic manipulation against biotic and abiotic stressors.
- 6. Hypothesize strategies to increase plant yield and fruit/seed quality.
- 7. Apply knowledge to real-world challenges in agriculture, veterinary medicine, conservation, and biomedical research
- 8. Understand the need for animal biotechnology for human welfare.

Course Outcomes:

After completing this course, the student is expected to learn the following:

- 1. Demonstrate a comprehensive understanding of plant biology, physiology, genetics, andmolecular biology.
- 2. Apply biotechnological tools and techniques used in plant research and agriculture, such asplant tissue culture, genetic engineering and transgenics.
- 3. Execute plant tissue culture techniques for callus induction, somatic embryogenesis, andmicropropagation, and apply them in plant breeding and propagation.
- 4. Perform plant transformation methods and demonstrate the ability to introduce foreign genesinto plants using different techniques.
- 5. Apply knowledge about ethical considerations and regulatory frameworks associated with plant biotechnology and genetically modified crops.
- 6. Understand the biology and characterization of cultured cells, including their adhesion, proliferation, differentiation, morphology, and identification.
- 7. Gain practical skills in basic mammalian cell culture techniques, measuring growth parameters, assessing cell viability, and understanding cytotoxicity.
- 8. Learn about germplasm conservation techniques and the establishment of gene banks, along with large-scale culture methods for cell lines.
- 9. Explore organ and histotypic culture techniques, biotransformation, 3D cultures, whole embryo culture, somatic cell cloning, and the ethical considerations surrounding stem cellsand their applications.

Plant and Animal Biotechnolog	gy - Content of Theory	60 hrs
Unit–I – Plant Tissue culture methods		15
Introduction, history, definition, hypothesis, and media and laboratory organization, types of cultu indirect organogenesis, and somatic embryogenes micropropagation, Seed culture, embryo culture, applications.	re, morphogenesis, differentiation, callus, sis, synthetic seeds. <i>In vitro</i> propagation at	direct, nd
Secondary metabolites, <i>In vitrosecondary</i> meta growth vs secondary metabolite production, bior production, limitations, and applications.		bolite
Unit -II Transgenic Plants and biosafety		15
genes into plants: Agrobacterium-mediated trans screening of transformed plants. Applications o genetic engineering: pest resistance, herbicide to Biosafety assessment of transgenic plants: p frameworks for releasing and commercializing socio-economic impacts of transgenic crops. I technologies.	f Transgenic Plants - Improved crop olerance, disease resistance, and abiotic st potential risks and benefits. Internation genetically modified organisms (GMOs	traits through ress tolerance. onal regulatory). Ethical and
Unit–III Animal Cell culture methods		15
Biology and characterization of cultured cells- ce cells, and identification. The basic technique of n growth in cultured cells, cell viability, and cyto suspension, and immobilized cultures. Organ and histotypic culture: Technique, ad (embryonic, adult, induced pluripotent), isolation cell engineering, ethical issues.	nammalian cell culture in vitro, Measurin ptoxicity. Large-scale culture of cell lin vantages, limitations, applications. Ster	g parameters of es- monolayer, m cells: types
Unit -IV Gene transfer in animals and applica	tions	15
Gene constructs promoter/ enhancer sequences a for animal cells- thymidine kinase. Transfection electroporation, lipofection, peptides, direct Di Transgene identification methods. Transgenic an Recent advances and applications in the field. Manipulation of animal reproduction and charact applications. Somatic cell cloning - cloning vaccines.	on of animal cells- calcium phosphate NA transfer, viral vectors, Retrovirus, d genome-edited animals. Ethical issues terization of animal genes, Embryo transf of Dolly. Ethical issues. Production of	coprecipitation, microinjection. in transgenesis. Fer in cattle and of recombinant
Pedagogy: Lectures, Seminars, Industry Visits, successful applications and challenges in transger	nic crop development.	tudies nighlight
	tive Assessment = 60 Marks	
Formative Assessment /type	Weightage in Marks	
Attendance	10	
Seminar	10	
Debates and Quiz	10	
Test	10 (0	
Total	60 marks + 40 marks = 100	marks

Course Title	Plant and Animal Biotechnology	Practical Credits	2
Course Code	DSC-A-12 (P)	Contact hours	60 hrs

Content of Practical

- 1. Laboratory organization of basic and commercial plant tissue culture
- 2. Media preparation (MS, B5), solid media preparation, and Liquid media preparation
- 3. Explant preparation Leaf, bud, rhizome, and meristem
- 4. Synthetic seed production
- 5. Callus culture- Initiation and establishment of different types of callus cultures
- 6. Micropropagation with a suitable example Stage 0. 1, 2, 3, and 4
- 7. Staining, cell viability, and cell count of cell cultures
- 8. Preparation of cell culture media: Preparation of basic cell culture media, such as Dulbecco's Modified Eagle Medium (DMEM), supplemented with fetal bovine serum (FBS), antibiotics, and other required additives.
- 9. Aseptic techniques and sterile handling: Practicing aseptic techniques, including properly handling tools and equipment, working in a laminar flow hood, and maintaining sterility throughout the cell culture process.
- 10. Filter sterilization: Practice filter sterilization for sensitive media ingredients.
- 11. Cell counting and viability assessment: Count cells using a hemocytometer or automated cell counter, and perform viability assays (e.g., trypan blue exclusion) to determine the percentage of viable cells.
- 12. Cell staining and microscopy: Staining the cultured cells using dyes such as hematoxylin and eosin (H&E), and observe them under a light microscope to study cell morphology and structure.
- 13. Contamination identification and troubleshooting: Learn to identify and troubleshoot common issues in cell culture, such as contamination by bacteria, fungi, or mycoplasma, and implementappropriate corrective measures.
- 14. Experimental design and data analysis: Students can design and execute simple experiments, record and analyze data, and interpret the results based on their observations and measurements.

Practical Assessment								
Formative Assessment		Summative Assessment	Total Marks					
Assessment Occasion/	Weightage in Marks	Practical Exams						
type								
Record	05							
Test	10							
Attendance	05	- 25	50					
Performance	05							
Total	25	25						

- 1. Bhojwani, S.S., and Razdan, M.K. (2004). Plant Tissue Culture: Theory and Practice. Amsterdam: Elsevier Science.
- Brown, T.A. (2010). Gene Cloning and DNA Analysis: An Introduction. 7th edition. Oxford: Wiley-Blackwell.
- 3. Gardner, E.J., Simmons, M.J., and Snustad, D.P. (2008). Principles of Genetics. 10th edition. Hoboken, NJ: John Wiley & Sons.
- 4. Glick, B.R., and Pasternak, J.J. (2018). Molecular Biotechnology: Principles and Applications of Recombinant DNA. 5th edition. Washington, DC: ASM Press.
- 5. Raven, P.H., Johnson, G.B., Losos, J.B., and Singer, S.R. (2013). Biology. 10th edition. New York, NY: McGraw-Hill Education.
- 6. Reinert, J., and Bajaj, Y.P.S. (1997). Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture. Berlin: Springer.
- 7. Russell, P.J. (2013). Genetics: A Molecular Approach. 3rd edition. Boston, MA: Benjamin Cummings.
- 8. Slater, A., Scott, N.W., and Fowler, M.R. (2008). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- 9. Smith, R. (2012). Plant Tissue Culture: Techniques and Experiments. 3rd edition. San Diego, CA: Academic Press.
- 10. Taiz, L., and Zeiger, E. (2014). Plant Physiology. 5th edition. Sunderland, MA: Sinauer Associates.
- 11. Vasil, I.K., and Vasil, V. (2007). Molecular Improvement of Cereal Crops. Dordrecht: Springer
- 12. Umesha S. (2018) Plant Biotechnology. TERI Publishers, New Delhi.
- 13. Wilson, K., & Walker, J. (2018). Principles and Techniques of Biochemistry and MolecularBiology (8th ed.). Cambridge University Press. ISBN: 978-1316614761.
- Gahlawat, S.K., Duhan, J.S., Salar, R.K., Siwach, P., Kumar, S., & Kaur, P. (2018). Advances in Animal Biotechnology and its Applications. Springer. ISBN: 978-981-10-4701-5.
- 15. Primrose, S.B., & Twyman, R.M. (2016). Principles of Gene Manipulation (8th ed.).Blackwell Science. ISBN: 978-1405135442.
- 16. Verma, A., & Singh, A. (2013). Animal Biotechnology. Elsevier. ISBN: 978-0124160026.
- 17. Glick, B.R., & Pasternak, J.J. (2009). Molecular Biotechnology (4th ed.). ASM Press. ISBN:978-1555814984.
- 18. Ranga M.M. Animal Biotechnology. Agrobios India Limited, 2002
- 19. Watson, J.D., Meyers, R.M., AC, A., & AW, J. (2006). Recombinant DNA (3rd ed.). ColdSpring Harbor Laboratory Press. ISBN: 978-0716728665.
- 20. Clynes, M. (Ed.). (1998). Animal Cell Culture Techniques. Springer.
- 21. Masters, J.R.W. (Ed.). (2000). Animal Cell Culture Practical Approach. Oxford UniversityPress.
- 22. Freshney, I. (2016). Culture of Animal Cells: A Manual of Basic Technique and SpecializedApplications (8th ed.). Wiley-Blackwell.
- 23. Pörtner, R. (Ed.). (2007). Animal Cell Biotechnology: Methods and Protocols. Humana Press.
- 24. Singh, B., & Gautam, S.K. (2013). Textbook of Animal Biotechnology. The Energy and Resources Institute (TERI).
- 25. Gupta, P.K. (2018). Animal Biotechnology. Rastogi Publications.
- 26. Mather, J.P., & Barnes, D. (Eds.). (Year N/A). Animal Cell Culture Methods. In Methods inCell Biology, Vol. 57. Academic Press.
- 27. Singh, B.D. (2006). Biotechnology: Expanding Horizons (3rd ed.). Kalyani Publishers.
- 28. Srivastava A.K. Animal Biotechnology. (2018). Oxford & IBH Publishing Co Pvt.Ltd.

Program Name Biotechnology Skills and Analytical Techniques		B.Sc. Biotechnology	Semester	5 th Semester
Course Title Biotechnology Skills and Analytical Techniques	Program Name			
JJJ	Course Title	Biotechnology Skills a	nd Analytical Techniques	

Course No.	SEC-4	No. of Theory Credits	2+1 (Theory+Practical)
Contact hours	45 hrs	Duration of ESA/Exam	2 hrs
Formative Assessment Marks	20	Summative Assessment Marks	30

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Demonstrate skills as per National Occupational Standards (NOS) of the "Lab Technician/Assistant" Qualification Pack issued by the Life Sciences Sector Skill Development Council-LFS/Q0509.
- 2. Develop knowledge of laboratory safety procedures and protocols and acquire skills in handling and maintaining laboratory equipment and instruments.
- 3. Operate analytical equipment and instruments as per standard operating procedures (SOP)
- 4. Knowledge about major activities of the biotech industry, regulations and compliance, environment, health and safety (EHS), good laboratory practices (GLP), and Good Manufacturing Practices (GMP) as per the industry standards.
- 5. Demonstrate soft skills, such as decision-making, planning, organizing, problemsolving, analytical thinking, critical thinking, and documentation.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-13)

Course Outcomes (COs)/Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12	13
Develop knowledge of laboratory safetyprocedures and protocols and acquireskills in handling and maintaining laboratory equipment and instruments.	7	>											
Operate analytical equipment and instruments as per standard operating procedures (SOP)		~	~									>	
Knowledge about major activities of thebiotech industry, regulations and compliance, environment, health and safety (EHS), good laboratory practices (GLP), and Good Manufacturing Practices (GMP) as per the industry standards.		~							>		7		
Demonstrate soft skills, such as decision making, planning, organizing, problemsolving, analytical thinking, criticalthinking and documentation.	~	~						•	~				

Biotechnology Skills and Analytical Techniques Content	30 Hrs
Unit-I Insights into the biotechnology industry and basic professional skills	15

Biotechnology Industry in Indian and Global Context- Organization in the context of large/medium/small enterprises, their structure, and benefits.

Industry-oriented professional skills: Planning and organizing skills, decision-making, problemsolving skills, analytical thinking, critical thinking, team management, and risk assessment. Interpersonal skills: Writing skills, reading skills, oral communication, conflict resolution techniques, interpretation of research data, and troubleshooting in the workplace.

Digital skills: Basic computer skills (MS Office, excel, power point, internet) for the workplace. Professional E-mail drafting skills and PowerPoint presentation skills. Overview of good manufacturing practices (GMP), Good Documentation practices (GDP), and good laboratory practices (GLP).

Unit- II Basic laboratory skills and Analytical Techniques	oratory skills and Analytical Technique	es
--	---	----

15

Analytical skills in the laboratory: Preparations of solutions, molarity, molality, normality, mass percent % (w/w), percent by volume ((\sqrt{v}) , parts per million (ppm), parts per billion (ppb), dilution of concentrated solutions. Standard solutions, stock solution, and solution of acids. Reagent bottle label reading and precautions.

Analytical techniques: Basic principle, operation, application, maintenance, calibration, validation, and troubleshooting of instruments- Microscope-Simple, compound, TEM, SEM, fluorescence. Centrifuge and different types, Hot air oven, pH meter, different types of pH electrodes Autoclave, Incubator, BOD, COD, cell counter, Laminar airflow. Spectroscopy-Colorimeter, UV-Visible spectroscopy. Electrophoresis- Agarose Gel electrophoresis, SDS-PAGE, PCR, Conductivity meter, and

Potentiometer. Biosafety cabinets.

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz, and Assignments

Course title Quality control metho (Practical)	ds in biology Practical credits-1	5 th Semester
Course No. SEC -4	Contact hours	4hrs/week
Unit-1	Content	
ntegrated clean-in-place (CIP) and ster	d management of lab: Learning and Prilize-in-place (SIP) as per industry stan equipment, ventilation area, personal principatte	dards, material

Unit-2

Preparation of Standard Operating Procedure (SOP) for various equipment in the QC Lab, Best practices of using and storing chemicals: Knowledge and practice in handling chemicals, labeling, and stock maintenance. SOP and material handling. Procedures to maintain chemicals, labeling, storage, and disposal.

Handling and calibration of lab equipment- weighing balance, Autoclave, Hot air Oven, Incubator, Centrifuge, Water bath, Colony Counter, and stability chamber, Preparation of Normality, Molarity, and buffer solutions

Unit-3

Preparation of media: Maintenance and storage of purified water for media (plant tissue culture media, microbiological media, and animal cell culture media) preparation. Preparation and storage of concentrated stock solutions. Documentation and disposal of expired stocks. Collection of indents of media requirement, preparation, and storage. Media coding, documentation, and purpose of usage.

Demonstration, handling, and troubleshooting of High-Performance Liquid Chromatography and Gas chromatography.

Demonstration of Polymerase Chain Reaction (PCR), Hands-on training on colorimeter and spectrophotometer, Industry visit, or analytical laboratory visit.

Note: Semester end examination is only in the theory component; questions from the practical partcould be included, if any.

References:

- 1. Douglas A. Skoog, F. James Holler, and Stanley R. Crouch (2017). "Principles ofInstrumental Analysis". Cengage Learning.
- 2. J. Perry Gustafson (2017). "Analytical Methods and Techniques for Advanced Sciences".CRC Press.
- 3. Dean F. Martin, William M. Ritchey, and Michael W. Wood (2017). "Laboratory Manual forPrinciples of General Chemistry". Wiley.
- 4. Michael Lufaso (2016). "Laboratory Skills for Science and Medicine: An Introduction". CRCPress.
- 5. David J. Livingstone and Christopher H. Amonette (2016). "Analytical Techniques inEnvironmental Chemistry: Applications to Air, Water and Soil". CRC Press.
- 6. Colin A. Ramsden (2014). "Analytical Molecular Biology". Oxford University Press.
- 7. John M. Walker and Ralph Rapley (2014). "Molecular Biomethods Handbook". HumanaPress.
- 8. Gary D. Christian, Purnendu K. Dasgupta, and Kevin A. Schug (2013). "AnalyticalChemistry". Wiley.
- 9. Roger L. Lundblad and Fiona M. Macdonald (2010). "Handbook of Biochemistry andMolecular Biology". CRC Press.

Program	B.Sc. Biotec	hnology		Semester	6 th Semester
Name					
Course Title	Immunology (Theory + Practical)				
Course Code:	DSC-A13(T)		No.	of Theory Credits	04
Contact hours	60 hrsD		Dura	ation of ESA/Exam	3 Hours
Formative Asse Marks	ssment	40	Sum	mative Assessment Marks	60

Course Objectives:

- 1. To understand the various aspects of immunity, elicitation of immune responses, factors determining the outcome of immune responses and major players of immunity, relevancebetween nutritional support and immunity, and immunological techniques.
- 2. To provide knowledge on essential features of antigens and antibodies and their types and different theories of Antibody formation.
- 3. To acquire knowledge on types of immunity, phagocytosis, interferons, and the complement system.
- 4. To explain the concept of hypersensitivity, autoimmunity, and transplantation.
- 5. To provide knowledge on immune deficiencies and several immunological techniques

Course Outcomes:

At the end of the course, the student should be able to:

- 1. Demonstrate comprehension of the underlying structure and function of the immunesystem and related disorders.
- 2. Demonstrate an understanding of the role of cells and molecules in immune reactions and responses
- 3. Demonstrate technical skills in immunological tools and techniques
- 4. Apply the domain-specific knowledge and skills acquired in immunology for innovativetherapies and Immunotechnologies
- 5. Understand the fundamental concepts of immunity, and the contributions of the organs and cells in immune responses.
- 6. Realize how the MHC molecule's function and host encounters an immune insult.
- 7. Understand the antibodies and complement system
- 8. Understand the mechanisms involved in the initiation of specific immune responses
- 9. Differentiate the humoral and cell-mediated immune mechanisms
- 10. Comprehend the overreaction by our immune system leading to hypersensitive conditions and its consequences
- 11. Understand unique properties of cancer cells, immune recognition of tumors, immune evasionof cancers

Immunology - Content of Theory	60 Hrs
Unit–I Cells and Organs of the Immune System	15

Introduction to the Immune System: History of Immunology, Types of Immunity: first and second line of defense, innate and acquired/adaptive immunity, specificity, diversity.

Cells of the immune system: Antigen-presenting cells (APCs), Role of B and T-lymphocytes in Humoral immunity and cell-mediated immunity, primary and secondary immune response, Immunization, memory. Organs of the Immune system: Thymus, bone marrow, spleen, Lymph Node, peripheral lymphoid organs

Unit -II Molecules of the Immune System

15

15

Antigens and haptens: Properties (foreignness, molecular size, heterogeneity). Adjuvants. Antigenicityand Immunogenicity. Affinity and Avidity. B and T cell epitopes, superantigens Immunoglobulins: Classification, structure, and function. Antibody diversity, Monoclonal and polyclonal antibodies.

Major histocompatibility complexes: Classification, structure, and function. Antigen processing pathways – Cytosolic and Endocytic, Complement Pathways, Cytokines: Classification and function, Hypersensitivity: Reactions – Types I, II, and III. Delayed Type Hypersensitive Response.

Structure and properties of antigens- iso- and allo-antigens, antigen specificity, Cross-reactivity, Precipitation, Immunodiffusion reactions: Radial immunodiffusion, Ouchterlony double diffusion, Immunoelectrophoresis. Agglutination: Agglutination reactions. ELISA, RIA. Immunocytochemistry, Fluorescent Techniques.

Vaccines: Conventional, peptide vaccines, subunit, DNA vaccines. Toxoids, antisera, edible vaccines, plantibodies, and Cancer vaccines.

Unit - IV	15
Transplantation immunology: Phases in graft rejection and immuno-suppressors. Autoimmu	ne
Disorders: Systemic and Organ-specific Autoimmune disorders with examples	
Immunodeficiencies: Primary and secondary immunodeficiencies; acquired immunodeficien	сy
syndrome	

Cancer and the immune system – immune surveillance, immunological escape, cancer antigens, cancerimmunotherapy

Microbial diseases in humans: Mode of infection, symptoms, epidemiology and control measures of diseases caused by Viruses (Hepatits-B), Bacteria (Typhoid), Fungi (Aspergillosis), Protozoa (Malaria).

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

	Sumr	native Assessment = 60 Marks			
	Form	ative Assessment Occasion/ type	Weightage in Marks		
	Atten	dance	10		
	Seminar Debates and Quiz Test Total		10 10 10 60 marks + 40 marks = 100 marks		
		Immunology (Practical)	Practical Credits	02	
Cours	e Title				
Cours	se No.	DSC-A14 (P)	Contact hours	60 hrs	
Conte	ent of P	Practical	1	1	

- 1. Hemagglutination of ABO Blood groups
- 2. Determination of Rh factor
- 3. Whole Count of WBC using Hemocytometer
- 4. Cells of the Immune System
- 5. Radial immunodiffusion
- 6. Ouchterlony double diffusion
- 7. ELISA Demonstrate
- 8. Serum Immunoelectrophoresis
- 9. Western Blotting

Practical Assessment					
Formative Assessment		Summative Assessment	Total Marks		
Assessment Occasion/	Weightage in Marks	Practical Exams			
type					
Record	05				
Test	10	25			
Attendance	05		50		
Performance	05				
Total	25	25			

References

- 1. Textbook of Immunology, Paul Ajoy, Books and Allied (P) Ltd., 2016
- 2. Cellular and Molecular Immunology. Abbas, A.K. et al., Elsevier Saunders Co., 2015
- 3. Essential Immunology. Riott, I.M., Blackwell Scientific Publications, 1994
- 4. Handbook of Experimental Immunology, Vol. 1 & 2, Weir D.M., Wiley, 1997
- 5. Immunology. Riott, I.M., Brostoff J., Male, D. Mosby Pub., 2017
- 6. Immunobiology. Janeway C.A. and Travers, P. Churchill Livingstone Pub., 2016
- 7. Practical Immunology. Hudson L. and Hay F.C., Blackwell Scientific Pub., 1989
- 9. Instant Notes in Immunology. Lydyard PM et al. Viva Books Pvt. Ltd., 2011
- 10. Abbas AK, Lichtman AH, and Pillai S. (2019). Basic Immunology- Functions and Disorders of the Immune System. Elsevier,
- 11. Abdul, K., Abbas, Andrew K. L., Jordan, S. P. (1998). Cellular and Molecular Immunology. W.B. Saunders Publisher. Philadelphia.
- 12. Benjamine, E., Cocoi., Sunshine. (2000). Immunology 4th edition- Wiley-Liss. New York.
- 13. Borrebacc, C.A.K. (1995). Antibody Engineering, 2nd edition. Oxford University Press, Oxford.
- 14. Dimmock, N.J., Primrose, S.B. (1994). Introduction to Modern Virology, Blackwell Science Ltd. Oxford.
- 15. Hyde, R.M. (1992). Immunology, 2nd edition, Williams and Wilkins, Baltimore.
- 16. Kuby, J. (2003). Immunology 5th Edition. WH. Freeman and Company, NY.
- 17. Klaus D. Elgert (1996). Immunology. ELBS, Blackwell Scientific Publishers, London.
- 18. Roitt, I.M. (2017). Essential Immunology, Thirteenth edition, ELBS, Wiley Blackwell Scientific Publishers, London.
- 19. Goldsby, R.A, Kindt TJ and Osborne A (2000). Kuby Immunology, 4th edition, W.H. Freeman and Company, New York
- 20. Tizard I.R. (1995). Immunology, 4thedition, W.B. Saunders Publisher. Philadelphia.
- 21. Paul W.E (1989). Fundamentals in Immunology, Raven Press. NY.

B.Sc. Biotechnology Sixth Semester

Program Name	B.S	c. Biotechnolog	у	Semester	6 th Semester
Course Title	Biop	rocess and Envi	ironmen	tal Biotechnology (Theory)	
Course Code:	DS	DSC-A15 (T)		of Theory Credits	04
Contact hours	60]	60 hrs		ation of ESA/Exam	03 Hours
Formative Assessm Marks	sment 40		Sun	mative Assessment Marks	60

Course Objectives:

- 1. Perform simulations of microbial growth and metabolism
- 2. Design bioreactors for the production of various products.
- 3. Present knowledge about major metabolic pathways and those related to biofuel production from microbes.
- 4. Understand the fundamental concepts and principles of environmental biotechnology and Explore the interrelationship between biotechnology and the environment.
- 5. Gain knowledge of the various applications of biotechnology in environmental conservation, pollution control, and sustainability.
- 6. Learn about microbial processes and their role in environmental biotechnology.
- 7. Understand the principles of bioremediation and its application in the clean-up of environmental pollutants.
- 8. Explore the potential of bioenergy production and waste management through biotechnological approaches.
- 9. Identify and characterize the most important contaminants in the Bioprocess and other industrial wastes.
- 10. Reuse/recycle the biological waste to clean technology such as energy, biofuel, bio fertilizer through bioremediation

Course out comes:

- 1. Exploitation of microorganisms for industrial use and their improvement, and formulation of media for efficient growth and production of microbial or cell-based products.
- 2. The design, operation, and specific applications of various bioreactors.
- 3. Demonstrate a comprehensive understanding of the fundamental concepts and principles of environmental biotechnology.
- 4. Apply knowledge of biotechnological techniques to address environmental challenges, such as pollution control and waste management.
- 5. Analyze and evaluate environmental biotechnology case studies, research findings, and real-world applications.
- 6. Design and implement biotechnological approaches for environmental remediation, utilizing microbial processes and biodegradation principles.
- 7. Evaluate the ethical and sustainable aspects of environmental biotechnology practices andmake informed decisions regarding their application in environmental conservation.
- 8. Communicate scientific concepts and research findings related to environmentalbiotechnology effectively, both in written and oral forms, to diverse audiences.

Bioprocess and Environmental Biotechnology – Content of Theory	60 hrs.
UNIT- I – Introduction to bioprocess technology	15
Basic principle components of fermentation technology. Strain improvement of industria microorganisms. Types of microbial culture and its growth kinetics– Batch, Fed-batch, an Continuous culture. Principles of upstream processing – Media preparation, Inocula devel sterilization.	d opment, and
UNIT- II-Bioreactors and downstream processing	15
Bioreactors- Significance of Impeller, Baffles, Sparger; Specializedbioreactors- design functions: airlift bioreactor, tubular bioreactors, membranebioreactors, tower bioreactors, bed reactor, packed bed reactors Downstream processing- cell disruption, precipitation methods, solid-liquid separation, lic extraction, filtration, centrifugation, chromatography, drying devices (Lyophilization and technology), crystallization, biosensors-construction and applications, Microbial product ethanol, amylase and Single Cell Proteins.	fluidized Juid-liquid spray dry
Unit III- Fundamentals of Environmental Biotechnology	15
Introduction to Environmental Biotechnology- Principles of Environmental Scien Biotechnology in Environmental Conservation. Microbial Processes in Environmental Bio Pollution and Biotechnology – Major issues in environmental pollution and the role of b in addressing them. Biotechnological Methods of Pollution Detection-General bioassay pollution detection. Cell biological methods for assessing pollution levels. Use of the pollution monitoring. Biotechnological Methods in Pollution Abatement-Reduction of C using biotechnological approaches. Addressing eutrophication through biotechnological in Application of cell immobilization techniques in pollution abatement.	otechnology iotechnolog methods fo biosensors i O2 emissio
Unit IV- Bioremediation and Waste Management	15
Importance of bioremediation in environmental cleanup. Types of contaminants suitable bioremediation. Microorganisms used in bioremediation. <i>In-situ</i> Bioremediation Methods Bioaugmentation. Biostimulation. Bioventing.Phytoremediation. <i>Ex-situ</i> Bioremediation I Composting, Land farming, Biopile and bioslurry systems. Xenobiotics. Bio metallurgy at mining.	. – Methods –

Waste water Management. Waste water Characterization and Composition. Biological Processes in Waste water Treatment. Activated Sludge Process and Biological Nutrient Removal, Anaerobic Digestion and Biogas Production. Solid Waste Management.

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks				
Formative Assessment Occasion/ type	Weightage in Marks			
Attendance	10			
Seminar	10			
Debates and Quiz	10			
Test	10			
Total	60 marks + 40 marks = 100 marks			

Course Title	Bioprocess and Environmental Biotechnology (Practical)	Practical Credits	02		
Course No.	DSC-A16 (P)	Contact hours	60 hrs		
Content of Pr	actical		I		
1. Bacteria	growth curve.				
2. Calculat	on of the thermal death point (TDP) of a microbial sample.				
3. Study of	fermentor- Demonstration.				
4. Producti	on of wine.				
5. Estimation	on of the percentage of alcohol, total acidity & volatile acid	ity in wine.			
	on and analysis of ethanol.	2			
	Production and analysis of amylase.				
	Production and analysis of lactic acid.				
	Isolation of industrially important microorganisms from natural resources.				
10 0 1					

10. Standard analysis of Water.

Practical Assessment				
Formative Assessment		Summative Assessment	Total Marks	
Assessment Occasion/	Weightage in Marks	Practical Exams		
type				
Record	05			
Test	10	25		
Attendance	05		50	
Performance	05			
Total	25	25		

References

- 1. Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.
- 2. Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- 3. Patel AH. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited.
- 4. Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd.
- 5. Colin Ratledge and Bjorn Kristiansen, Basic Biotechnology (3rd Edn.).2022
- 6. Cambridge University Press. 2002.
- 7. Jackson AT., Bioprocess Engineering in Biotechnology, Prentice Hall, Engelwood Cliffs, 1991.
- 8. Mansi EMTEL, Bryle CFA. Fermentation Microbiology and Biotechnology, (2nd Ed). Taylor & Francis Ltd, UK, 2007.
- 9. Michael, L. Shulers and Fikret Kargi. Bioprocess Engineering: Basic concepts (2nd Ed.) Prientice Hall Publishers. 2001.
- 10. Paulins, M. D. Bioprocess Engineering Principles. John Wiley Publishers.2003.
- 11. Prentice Hall, Engelwood Cliffs, 2002.
- 12. Prescott, Sc and Dunn, C. Industrial Microbiology, McGraw Hill, New York. 1984.
- 13. Shuler ML and Kargi F., Bioprocess Engineering: Basic concepts, 2nd Edition,
- 14. Peavy, H. S., Rowe, D. R., & Tchobanoglous, G. (2014). Environmental engineering. McGraw-Hill Education.
- 15. Banerjee, S., & Santhosh, C. (2019). Environmental biotechnology: Concepts and applications. CRC Press.

16. Mishra, A. K	. (2016).	Environmental	biotechnology:	Basic conc	epts and app	plications.	CRC
Press.							

- 17. Torres, A. E., & López-González, J. A. (2018). Environmental biotechnology: An introduction. John Wiley & Sons.
- 18. Das, S., & Dash, H. R. (2020). Environmental biotechnology: Principles and applications. Springer.
- 19. Wackett, L. P., & Hershberger, C. D. (2018). Environmental biotechnology: Theory and application. McGraw-Hill Education.
- 20. Foster, C. F., & John, W. D. A. (1987). Environmental biotechnology. Ellis Horwood Limited.
- 21. Chatterji, A. K. (2002). Introduction to environmental biotechnology. Prentice-Hall of India Pvt. Ltd.
- 22. Ignacimuthu S. (2001). Basic Biotechnology. Rev. Fr. Tata McGraw Hill, New Delhi,
- 23. Ratledge C. and Kristiansen B. (2002). Basic Biotechnology. Cambridge University Press, UK

Internship for Graduate Programme

Course title	Internship Discipline specific
No of contact hours	90
No credits	2
Method of evaluation	Presentations/Report submission/Both

Project Assessment			•
Formative Assessment		Summative Assessment	Total Marks
Assessment Occasion/	Weightage in Marks	Practical Exams	
type			
Data	10		
maintenance		Presentation/Report/Both	
Assessment	10	25	50
Attendance	05		
Total	25	25]

- Internship shall be Discipline Specific of 90 hours (2 credits) with duration 4-6 weeks.
- Internship may be full-time/part-time (full-time during semester holidays and part-time in the academic session)
- The student should submit the final internship report (90 hours of Internship) to the mentor for completion of the internship.
- The detailed guidelines and formats shall be formulated by the universities separately as prescribed in accordance to UGC and AICTE guidelines.