BENGALURU CITY UNIVERSITY

Second Semester (NEP) Open Elective

Mathematics -2

Model Paper – 1

Time: 21 Hours

Part – A

max. marks: 60

I ANSWER ANY FIVE QUESTIONS

(5x3=15)

- 1. Find the quotient and remainder obtained by dividing $3x^3 4x^2 + 2x + 1$ by x 3.
- 2. State Descartes' rule of signs.
- 3. If α, β are roots of equation $x^2 2x + 4 = 0$ then find
- i. $\sum \left(\frac{1}{\alpha^2}\right)$
- ii. $\sum \alpha^3$
- 4. If $u = \sin x \cos y$ find u_{xx}, u_{yy} .
- 5. Find $\frac{dz}{d\theta}$ if z = x + y, where $x = \cos^2 \theta$, $y = \sin^2 \theta$, by using partial differentiation.
- 6. If u = 3x + 5y, v = 4x 3y, find $\frac{\partial(u,v)}{\partial(x,y)}$.
- 7. Evaluate $\oint_C 5xy \, dx + y^2 dy$ where C is the curve $y = 2x^2$ in the xy-plane from (0,0) to (1,2).
- 8. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2\cos(\theta)} r \, dr \, d\theta$
- 9. Evaluate $\int_0^1 \int_0^2 \int_1^2 x^3 y \, dx \, dy dz$

Part – B

UNIT-I

II ANSWER ANY THREE QUESTIONS

(3x5=15)

- 10. Solve the equation $32x^3 48x^2 + 22x 3 = 0$ given the roots are in AP.
- 11. Solve $x^3 5x^2 2x + 24 = 0$, the product of two of its roots being

Chairperson
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru-560001.

- 12. Solve the reciprocal equation $2x^4 + x^3 6x^2 + x + 2 = 0$.
- 13. If α , β , γ are the roots of the equation $3x^3 7x^2 + 6x + 5 = 0$ then find
- i. $\sum \frac{1}{\alpha}$
- ii. $\sum \alpha \beta$
- iii. $\sum \frac{\alpha}{\beta}$
- 14. Find the multiple roots of $x^4 2x^3 7x^2 + 20x 12 = 0$.

UNIT - II

III ANSWER ANY THREE QUESTIONS

(3x5=15)

- 15. Verify Euler's theorem for $u = \frac{x^2 + y^2}{x y}$
- 16. If $x = r \cos(\theta)$ and $y = r \sin(\theta)$ verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1$
- 17. Expand $e^x \cos(y)$ in a Taylor Series about the point $(1, \frac{\pi}{4})$ upto the 2^{nd} degree term.
- 18. Expand e^{xy} upto 2^{nd} degree term using Maclaurin Series Expansion.
- 19. Find extreme values of $f(x, y) = x^3y^2(1 x y)$

UNIT - III

IV ANSWER ANY THREE QUESTIONS

(3x5=15)

- 20. Evaluate $\oint_C (x + 2y) dx + (4 2x) dy$ around the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ in the counter clockwise direction.
- 21. Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dy \, dx}{1+x^2+y^2}$
- 22. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by using double integral.
- 23. Evaluate $\int_0^a \int_0^{\sqrt{a^2 x^2}} \int_0^{\sqrt{a^2 x^2 y^2}} \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}}$
- 24. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Chairperson
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru-560001

BENGALURU CITY UNIVERSITY

Second Semester (NEP) Open Elective

Mathematics - 2

MODEL PAPER - 2

Time: 2 1 Hours

PART A

mar. marks: 60

I. Answer any five questions.

 $(5 \times 3 = 15)$

- 1. Solve the equation $x^3 9x^2 + 25x 21 = 0$ given that $3 + \sqrt{2}$ is one of its root.
- 2. State Factor Theorem.
- 3. If α and β are the roots of the equation $ax^2 + bx + c = 0$ then find

i)
$$\sum \left(\frac{\alpha}{\beta}\right)$$

ii)
$$\sum \left(\frac{\alpha^2}{\beta}\right)$$

- 4. If u = log(x + y) then prove that $u_{xy} = u_{yx}$
- 5. Find total derivative of $f(x, y) = x^3y x^2y^2$
- 6. If $x = r\cos\theta$ and $y = r\sin\theta$ find $\frac{\partial(x,y)}{\partial(r,\theta)}$
- 7. Evaluate $\int_{(0,1)}^{(2,3)} [(2xy-1)dx + (x^2+1)dy]$ along the line y = x+1
- 8. Evaluate $\int_0^{\pi/2} \int_0^{\pi/6} \sin x \cos y dx dy$
- 9. Evaluate $\int_0^{\pi/2} \int_0^{\pi/6} \int_0^{\pi/3} z \sin x \cos y dz dx dy$

PART B

UNIT-I

II. Answer any three questions.

 $(3 \times 5 = 15)$

- 10. Solve the equation $6x^3 11x^2 + 6x 1 = 0$ given that the roots are in H.P.
- 11. Solve $x^3 + x^2 16x + 20 = 0$ such that the difference between two of its roots being 7
- 12. Solve the reciprocal equation $4x^4 20x^3 + 33x^2 20x + 4 = 0$
- 13. Solve $x^4 6x^3 + 11x^2 10x + 2 = 0$ given that $2 + \sqrt{3}$ is a root.

Department of Mathematics
Bengaluru City University
Central College Campus
Rangaluru-560001

14. Find the multiple roots of the equation $x^4 - 6x^3 + 13x^2 - 24x + 36 = 0$

III. Answer any three questions.

 $(3 \times 5 = 15)$

- 15. Verify Euler's theorem for $u = x^3 2x^2y + 3xy^2 + y^3$
- 16. If $u = x + 3y^2 z^3$, $v = 2x^2 yz$, $w = 2z^2 xy$, evaluate $\frac{\partial (u, v, w)}{\partial (x, y, z)}$ at (1, -1, 0)
- 17. Expand e^{xy} about (1,1) upto 2^{nd} degree term.
- 18. Expand cos(x + y) in powers of x and y upto 3^{rd} degree using Maclaurin's series expansion.
- 19. Show that $f(x, y) = x^3 + y^3 3x 12y + 20$ has maximum at (-1, -2), minimum at (1,2) and (1, -2) and (-1,2) are saddle points.

IV. Answer any three questions.

 $(3 \times 5 = 15)$

- 20. Evaluate $\int_C [xydx + yzdy + zxdz]$ where C is $x = t, y = t^2, z = t^3$ and -1 < t < 1
- 21. Evaluate $\int_0^a \int_0^{\sqrt{a^2 x^2}} \frac{dy dx}{\sqrt{a^2 x^2 y^2}}$
- 22. Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ by using double integral.
- 23. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$
- 24. Find the volume of the tetrahedron formed by the planes x = 0, y = 0, z = 0 and 6x + 4y + 3z = 12

Chairperson

Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru-560001.

BENGALURU CITY UNIVERSITY

Second Semester (NEP) Open Elective

Mathematics -2

Model Paper-3

Time: 21 Hours

Part A

max. marks: 60

I Answer any five questions

(5x3=15)

- 1. Solve the equation $3x^3 23x^2 + 72x 70 = 0$ given $3 + i\sqrt{5}$ is one of its root.
- 2. State Remainder Theorem.
- 3. If α and β are the roots of $2x^2 3x + 5 = 0$ then find (i) $\sum_{\alpha} \frac{1}{\alpha}$ (ii) $\sum_{\alpha} \alpha^2$
- 4. If $U = x^2 + y^2$ find U_x , U_y and U_{xy}
- 5. Find $\frac{du}{dt}$, if $u = x^2y^3$ where $x = 2t^3$ and $y = 3t^2$ by using partial differentiation.
- 6. If z = f(x, y) where x = u + v and y = u v Prove that $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = 2 \frac{\partial z}{\partial x}$
- 7. Evaluate $\int_{(0,0)}^{(1,1)} x ds$ along y = x
- 8. Evaluate $\int_1^2 \int_3^4 (xy + e^y) dy dx$
- 9. Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 yz dx dy dz$

Part B

Unit-1

II Answer any three questions

(3X5=15)

- 10. Solve the equation $3x^3 26x^2 + 52x 24 = 0$ given that the roots are in G.P.
- 11. Solve the equation $x^3 4x^2 + x + 6 = 0$ two of the roots being in the ratio 2:3
- 12. Solve the reciprocal equation $x^4 + 3x^3 3x 1 = 0$

Chair person

Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru-560 001

13. Solve the equation $x^4 - 2x^3 - 10x^2 + 6x + 45 = 0$ given that -2 + i is a root.

14. Find the multiple roots of $3x^4 + 16x^3 + 24x^2 - 16 = 0$

Unit-II

III Answer any three questions

(3x5=15)

15.If
$$u = \sqrt{(x^2 + y^2)}$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$

16. If
$$u = 2xy$$
, $v = x^2 - y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ prove that $\frac{\partial(u,v)}{\partial(r,\theta)} = -4r^3$

17. Obtain Taylor's series expansion of $f(x, y) = x^2y + 3y - 4$ in powers of (x - 1) and (y + 2)

18.Expand $\sin (x + y)$ in powers of x and y upto 3^{rd} degree terms using Maclaurin's series expansion.

19. Find the extreme values of $f(x, y) = 2x^2 - xy + y^2 + 7x$

Unit-III

IV Answer any three questions

(3x5=15)

20.Evaluate $\int_c [(2x+y)dx + (3y+x)dy]$ along the line joining the points (0,1) and (2,5)

21. Evaluate
$$\int_0^a \int_0^{\sqrt{a^2 - y^2}} \sqrt{a^2 - x^2 - y^2} dxdy$$

22. Find the area of the circle $x^2 + y^2 = a^2$ by using double integration.

23.Evaluate
$$\int_0^1 \int_0^{x^2} \int_0^{x+y} (x - 2y + z) dz dy dx$$

24. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by using triple integral.

Chairperson
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru-560001.