BENGALURU CITY UNIVERSITY

III SEMESTER B.Sc Degree Examination

Mathematics (Core) - Ordinary Differential Equations and Real Analysis - 1

Model Paper - 1

Time: 2 Hours and 30 Minutes

Max. marks: 60

Answer any six questions 1

 $6 \times 2 = 12$

- Show that the equation $(5x^4 + 3x^2y^2 2xy^3)dx + (2x^3y 3x^2y^2 5y^4)dy = 0$ is exact. 1.
- Find the general solution of $(x^2 1)p^2 2xyp + y^2 1 = 0$. 2.
- Solve $(D^2 6D + 13)y = 0$.
- Write the necessary and sufficient condition for the total differential equation Pdx + Qdy + Rdz = 0 to 3. be integrable.
- Test the nature of the sequence { $1 + \cos n\pi$ }.
- State the Cauchy's General Principle of convergence. 5.
- Test the convergence of the series $1^3 + 2^3 + 3^3 + \cdots + n^3$. 6. 7.
- Define the nature of the geometric series

Answer any three questions 11

 $3 \times 4 = 12$

- Verify for exactness and solve (ax + hy + g) dx + (hx + by + f) dy = 0.
- 10. Solve $p^2 + 2pycotx y^2 = 0$.
- Solve $y = 2px yp^2$.
- Find the general and singular solution of sinpx cosy = cospx siny + p.
- Find the orthogonal trajectories of the family of parabolas $y^2 = 4\alpha x$ where 'a' is the parameter. 12. 13.

Answer any three questions Ш

 $3 \times 4 = 12$

- 14. Solve $y'' + 3y' + 2y = \cos^2 x$.
- Solve $x^2y'' xy' + 2y = xlogx$.
- 15. Solve y'' + y = tanx by using the method of variations of parameters.
- 17. Solve $\frac{dx}{dt} 7x + y = 0$, $\frac{dy}{dt} 2x 5y = 0$
- 18. Verify the condition for integrability and solve $3x^2(y+z)dx + (z^2+x^3)dy + (2yz+x^3) = 0$.

Department of Mathematics Bengaluru City University Central College Campus Bengaluru - 560 001

Answer any three questions IV

- Examine the convergence of the sequences whose nth term is
 - $\sqrt{n+1} \sqrt{n}$ (ii)
- $\left(\frac{n+1}{n-1}\right)^n$
- 20. Prove that every convergent sequence is bounded.
- 21. Prove that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is (i) monotonically increasing (ii) bounded.
- Discuss the nature of the sequence $\left\{x^{\frac{1}{n}}\right\}$, x > 0.
- Find the limit of the sequence 0.5, 0.55, 0.555,

Answer any three questions ٧

 $3 \times 4 = 12$

- Test the convergence of $1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$
- State and prove D'Alembert's Ratio Test for series of positive terms.
- Discuss the convergence of the series $\sum_{1}^{\infty} \left(\frac{nx}{n+1}\right)^n$.
- Examine the convergence, absolute & conditionally convergence of $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$ 27.
- Sum to infinity the series $\sum_{1}^{\infty} \frac{(n+1)(2n+1)}{(n+2)!}$ 28.

BENGALURU CITY UNIVERSITY

III SEMESTER B.Sc Degree Examination

Mathematics (Core) - Ordinary Differential Equations and Real Analysis - 1

Model Paper - 2

Time: 2 Hours and 30 Minutes

Max. marks: 60

I Answer any six questions

 $6 \times 2 = 12$

- 1. Show that the equation (4x + 3y + 1)dx + (3x + 2y + 1)dy = 0 is exact.
- 2. Find the general solution of $(a^2 x^2)p^2 + 2xyp + y^2 b^2 = 0$.
- 3. Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$.
- 4. Verify the condition for integrability for 2yzdx + zxdy xy(1+z)dz = 0
- 5. Prove that $\left\{\frac{3n+4}{2n+1}\right\}$ is monotonically decreasing sequence.
- 6. If $\lim_{n\to\infty} a_n = l$ then prove that $\lim_{n\to\infty} |a_n| = |l|$.
- 7. Test the convergence of the series $\sqrt{\frac{1}{4}} + \sqrt{\frac{2}{6}} + \sqrt{\frac{3}{8}} + \cdots + \sqrt{\frac{n}{2n+2}} + \cdots$
- 8. State the Rabee's Test for series of positive terms.

II Answer any three questions

 $3\times 4=12$

- 9. Verify for exactness and solve $(x^2 ay) dx + (y^2 ax) dy = 0$.
- 10. Solve $6p^3 7p^2 p + 2 = 0$.
- 11. Solve $x = y + p^2$.
- 12. Find the general and singular solution of (y px)(p 1) = p.
- 13. Show that the family of curves $\frac{x^2}{c} + \frac{y^2}{c+1} = 1$ is self-orthogonal where 'c' is the parameter.

III Answer any three questions

 $3 \times 4 = 12$

- 14. Solve $(D^2 2D + 4)y = e^x \cos x$.
- 15. Solve $4x^2y'' + 4xy' y = 4x^2$.
- 16. Solve y'' + 9y = sec3x by using the method of variations of parameters.
- 17. Solve $\frac{dx}{dt} = 3x 4y$, $\frac{dy}{dt} = x y$
- 18. Verify the condition for integrability and solve $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$.

Chaileran
Department of Mathematics
Bengaluru City University
Central College Campus

iV Answer any three questions

 $3 \times 4 = 12$

- 19. Test the convergence of the sequences whose nth term is
 - (i) $\frac{2n^2+3n+5}{n+3}\sin\left(\frac{\pi}{n}\right)$
- (ii) $\frac{n+(-1)^n}{n}$
- 20. If $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ then show that $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- 21. Prove that a monotonically increasing sequence which is bounded above is convergent..
- 22. Discuss the nature of the sequence $\{a_n\}$ where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$.
- 23. Show that the sequence $\{x_n\}$ where $x_1 = 1$, $x_n = \sqrt{2 + x_{n-1}}$ is convergent and converges to 2, $\forall n \geq 2$.

V Answer any three questions

 $3 \times 4 = 12$

- 24. Test the convergence of $\sum \frac{1.2.3...n}{3.5.7.9...(2n+1)}$
- 25. Discuss the nature of the series $\sum_{1}^{\infty} \frac{1}{n^p}$.
- 26. Discuss the convergence of the series $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots$
- 27. Examine the convergence of the series $\frac{x}{\sqrt{1}} \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} \frac{x^4}{\sqrt{4}} + \cdots$
- 28. Sum to Infinity the series $\frac{1}{2} + \frac{1}{3.2^2} + \frac{1}{5.2^3} + \frac{1}{7.2^4} + \cdots$

BENGALURU CITY UNIVERSITY

III SEMESTER B.Sc Degree Examination

Mathematics (Core) - Ordinary Differential Equations and Real Analysis - 1

Model Paper - 3

Time: 2 Hours and 30 Minutes

Max. marks: 60

Answer any six questions 1

 $6 \times 2 = 12$

- Show that the equation $(sinxcosy + e^{2x})dx + (cosxsiny + tany)dy = 0$ is exact. 1.
- Solve $p^2 5p + 6 = 0$ where $p = \frac{dy}{dx}$ 2.
- Find the particular integral of $\frac{d^2y}{dx^2} + y = sin3x$. 3.
- Verify the condition for integrability for (yz+xyz)dx+(zx+xyz)dy+(xy+xyz)dz=04.
- Define a convergent sequence with an example. 5.
- Discuss the boundedness of the sequence whose nth term is $(-1)^n \frac{1}{n}$. 6.
- Test the convergence of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ 7.
- State the Leibnitz's Test for an alternating series. 8.

Answer any three questions 11

 $3 \times 4 = 12$

- Verify for exactness and solve $(x^2-2xy+3y^2) dx + (y^2+6xy-x^2) dy = 0$.
- 10. Solve $xp^2 + (y x)p y = 0$.
- 11. Solve $p^3 4xyp + 8y^2 = 0$.
- 12. Find the general and singular solution of $x^2(y px) = p^2y$ using the substitution $x^2 = u$ and $y^2 = v$.
- Find the orthogonal trajectories of the family of curves $r = a(1 cos\theta)$.

Answer any three questions III

 $3 \times 4 = 12$

- 14. Solve $y'' + 2y' + 4y = e^x \sin x$.
- 15. Solve $(x+2)^2y'' (x+2)y' + y = 3x + 4$.
- 16. Solve $y'' y = \frac{2}{1 + e^x}$ by using the method of variations of parameters.
- 17. Solve $\frac{dx}{dt} + 2y = -sint$, $\frac{dy}{dt} 2x = cost$
- Verify the condition for integrability and solve $(y^2+yz)dx+(xz+z^2)dy+(y^2-xy)dz=0$.

IV Answer any three questions

 $3 \times 4 = 12$

19. Discuss the convergence of the sequences whose nth term is

(i)
$$\sqrt{n^2+1}-1$$

(ii)
$$\frac{3+7+11+ +(4n-1)}{2n^2+3n}$$

- 20. If $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ then show that $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 21. Prove that the limit of convergent sequence is unique.
- 22. Discuss the nature of the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$.
- 23. Show that the sequence $\{a_n\}$ where $a_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$ is convergent.

V Answer any three questions

 $3 \times 4 = 12$

- 24. Examine the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \cdots$
- 25. State and prove Cauchy's root test for the convergence of the series of positive terms.
- 26. Discuss the convergence of the series $\sum_{1}^{\infty} \sqrt{\frac{n+1}{n^3+1}} x^n$
- 27. Test the convergence of the series $1 \frac{1}{2^p} + \frac{1}{3^p} \frac{1}{4^p} + \cdots$ (p > 0)
- 28. Sum to infinity the series $1 + \frac{2}{6} + \frac{2.5}{6.12} + \frac{2.5.8}{6.12.18} + \cdots$
