K.L.E Society's<br>S. Nijalingappa College<br>II BLOCK RAJAJINAGAR, BENGALURU -10

## PG Department of Mathematics QUESTION BANK

## Algebra [M101T]

## 7 Marks

1. Define dihedral group. And show that $\mathrm{D}_{8}$ group is not cyclic with Caylee's table.
2. State and Prove Calyles Theorem.
3. If a permutation is a product of $S$ transpositions and also a product of $T$ transpositions. Show that both S and T even and odd.
4. Verify the class equation for D3.
5. State and prove fundamental theorem of Homomorphism
6. Let G be a group acting on set S and $\mathrm{x} \in \mathrm{S}$ then $\operatorname{stab}(\mathrm{x})$ is a subgroup of G .
7. Define Automorphism. If N and M are two normal subgroups of G then prove that $\frac{N M}{M} \approx \frac{N}{N \cap M}$
8. State and prove second Isomorphic Theorem
9. Define a principal ideal, principal ideal ring and show that the set of integers is a PIR.
10. Define a maximal ideal, prime ideal and show that in a commutative ring with unity, a maximal ideal is a prime ideal.
11. Define a Euclidean ring and show that the set of Gaussian integers is a Euclidean ring.
12. Let R be an integral domain with ideal P , then show that P is a prime ideal if and only if $\frac{R}{P}$ is an integral domain.
13. Show that in a PIR, every non-zero prime ideal is maximal.
14. State and prove first Isomorphic Theorem.
15. .Define Alternating group hence Prove that $\mathrm{Sn} / \mathrm{An}=\{1,-1\}$
16. Define stabilizer of a group. State and prove Orbit-Stabilizer theorem.
17. Prove that If $G$ be a finite set acting on $S$ and $K$ denote the number of orbits in $S$ then
a. $\mathrm{K}=\frac{1}{O(G)} \sum_{g \in G} O\left(S_{\mathrm{g}}\right)$
18. Let $G$ be a group, an element a in $G$ solve the class equation of Order of $G$ by

$$
\text { Using } \mathrm{Ca}=\frac{o(G)}{o(N a)} \text {. }
$$

19. Define Solvable group. A group G Iff the $\mathrm{G}^{\mathrm{n}}=\{\mathrm{e}\}$ for $\mathrm{n} \geq 1$.
20. A Normal H of a group is maximal iff $\mathrm{G} / \mathrm{H}$ is simple
21. State and Prove Cauchy's Theorem for Syllow's group.
22. If $A$ and $B$ are finite order subgroups of a group $G$ then show that

$$
O(A x B)=\frac{O(A) \cdot O(B)}{O\left(A \cap x B x^{-1}\right)}
$$

## 10 Marks

1. State and Prove Syllow's $3^{\text {rd }}$ Theorem.
2. State and prove Syllow's First theorem.
3. Define a Simple group. Show that the A60 is simple.
4. Define Composition series. State and prove Jorden Holder Theorem.
5. State and prove Jorden Holder Theorem.

## Topology [ M303T]

## 7Marks

1. Define Cauchy's Sequence. Let $X$ be a complete space and $Y$ be a subspace of $X$ the $Y$ is complete iff it is closed
2. Define closure of a set. In a topological space $(X, \tau)$ for any $A \subseteq X$. Show that $A \cup d(A)$ is closed.
3. Define closure of a set. In a topological space $(X, \tau)$ for any $A \subseteq X$. show that $A \cup d(A)$ is closed.
4. Define Interior of a set. For any $A \subseteq X$, show that $A O=(\overline{A 1}) 1$
5. Define the continuity of a function in topological space. $f: \rightarrow Y$ is continuous at x iff V is a neighbourhood of $\mathrm{f}(\mathrm{x}) \Rightarrow f^{-1}(\mathrm{~V})$ is nbd of x .
6. State and prove pasting lemma.
7. Define Homeomorphism. A bijective function $f: X \rightarrow Y$ is a Homeomorphism, iff $\mathrm{f}(\overline{A)} \subseteq$ $f(A)$ for any set $\mathrm{A} \subseteq \mathrm{X}$.
8. Define topological Space. In topological space ( $\mathrm{X}, \tau$ ) show that
i. Arbitrary intersection of closed sets is closed.
ii. Finite Union of closed sets is closed.

## 10-Marks

1. State and prove contraction mapping theorem.
2. State and prove Schroder- Bernstein Theorem
3. State and prove Bair's category theorem
4. State and prove cantor's intersection theorem.
5. Define bases of a topological space with an example. And Prove that is subfamily $\beta$ of ${ }_{\tau}$ is a base for $\tau$ iff $\mathrm{U} \in \tau$ and $\mathrm{x} \in \mathrm{U}$ implies there exists $\mathrm{B} \in \beta$ such that $\mathrm{x} \in \mathrm{B} \subseteq \mathrm{U}$.
6. Let $(X, \tau)$ be any topological space, then for any set $A, B \subseteq X$. Show that
i. $\quad \mathrm{d}(\Phi)=\Phi$
ii. $\quad A \subseteq B \Rightarrow d(A) \subseteq d(B)$
iii. $\quad d(A \cup B)=d(A) \cup d(B)$
7. Define limit point of a topological space. If $X=\{a, b, c\}, \tau=\{\Phi, X,\{a\},\{b, c\}\}$ i. If $A=\{c\}$ find $d(A)$.
ii. Let $\mathrm{A} \subseteq(\mathrm{X}, \mathrm{d})$ then followings are equivalent
i) $X$-A is Open
ii) $d(A) \subseteq A$ Where $d(A)$ is the set of all limit points of $A$
