

K.L.E Society's S. Nijalingappa College II BLOCK RAJAJINAGAR, BENGALURU -10



4

## PG Department of Mathematics QUESTION BANK

## **Complex Analysis**

- **1.** Define harmonic conjugate. Show that the two functions u(x, y) and v(x, y) are harmonic conjugates to each other if and only if they are constants.
- 2. Derive Cauchy's integral formula and hence evaluate

$$\int_C \frac{z^2}{(z-1)(z-2)} dz$$
 where  $C: |z| = 3$ .

- **3.** State and prove fundamental theorem of algebra.
- **4.** Expand the following function in Laurent's series valid for the region 2 < |z| < 3.

$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$

5. Find the radius of convergence of the following functions.

(i) 
$$\sum \left(1+\frac{1}{n}\right)^{n^2} z^n$$

(ii)  $\sum \left(\frac{1}{2^n+1}\right) z^n$ 

- 6. Expand log(1 + z) using Taylor's series about z = 0 and hence deduce the expansion of  $\log \sqrt{\frac{1+z}{z}}$ 
  - $log \sqrt{\frac{1+z}{1-z}}$
- 7. State and prove Laurent's theorem.

Define the following terms and give one example for each.

(i) Pole

- (ii) Removable singularity
- (iii) Essential singularity
- (iv) Isolated singularity
- (b) Show that a function which has no singularity in the finite part of the complex plane and has a pole of order n at infinity is a polynomial of degree n. **6**

(c)Show that the function  $f(z) = \frac{z^2+4}{e^z}$  has isolated essential singularity at  $z = \infty.4$ 

**5.** (a) State and prove Cauchy's residue theorem.

(b)Find the residue of the function

$$f(z) = \frac{z}{(z-1)(z+1)^2}$$
 at its poles.3

(c)Show that

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} \, dx = \frac{\pi}{3}.$$

- **6.** State and prove argument principle theorem.
- 7. State and prove Rouche's theorem. Also determine the number of zeros of the polynomial  $z^{10} 6z^7 + 3z^3 + 1$  in |z| < 1.
- 8. State and prove Weierstrass's factorization theorem.
- **9.** Derive Jensen's formula.

**10.** State and prove Hadamard's three circle theorem and hence prove that  $\log M(r)$  is a convex function of  $\log(r)$ 

- **11.** State and prove mean value theorem for an harmonic function.
- **12.** Define analytic function. Show that an analytic function with constant modulus is constant.
- **13.** State and prove Cauchy's inequality theorem.
- **14.** State and prove Cauchy's theorem for a circular disc.
- **15.** Expand the following function in Laurent's series valid for the region 1 < |z| < 3.

$$f(z) = \frac{1}{(z+1)(z+3)}$$

**16.** Find the radius of convergence of the following functions.

(i) 
$$\sum \left(\frac{2+in}{2^n}\right) z^n$$
  
(ii)  $\sum \left(\frac{2^{-n}}{1+in^2}\right) z^n$ 

6

5

(iii) 
$$\sum \frac{(n!)^2}{(2n)!} \mathbf{z}^n$$

**17.** State and prove Taylor's theorem and expand  $f(z) = \cos(z)$  about  $z = \frac{\pi}{4}$ .

**18.** Define the following terms and give one example for each.

(i) Isolated singularity.

- (ii) Essential singularity.
- **19.** Show that a function which has no singularity in the finite part of the plane or at infinity is constant.

**20.** Discuss the nature of singularity of the following functions.

(i) 
$$f(z) = \sin z - \cos z$$
 at  $z = \infty$   
(ii)  $f(z) = (z - 3) \sin \frac{1}{z + 2}$  at  $z = -2$   
(iii)  $f(z) = \frac{\cot(\pi/z)}{(z - a)^2}$  at  $z = \infty$ .

**21.** (a) Evaluate the integral

$$\int_{0}^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} \, d\theta.$$

**22.** State and prove Weierstrass's factorization theorem.

**23.** State and prove open mapping theorem.

**24.** State and prove Schwarz's lemma.

25. Find the residue of the function at its poles

$$f(z) = \frac{1}{(z^2 + 1)^3}$$

26. Evaluate

$$\int\limits_{V} \frac{e^{2z}}{(z-1)^2(z+2)} dz$$

where  $\gamma$  is a closed curve defined by |z| = 4 using the Cauchy's residue theorem.

**27.** State and prove maximum modulus theorem.

**28.** Derive Poisson-Jensen's formula.

**29.** State and prove Phragmen – Lindelof theorem.