

PG Department of Mathematics QUESTION BANK

Differential Geometry

- 1. Given $V = y^2 U_1 x U_3$, f xy, $g = z^3$, find (i) V[f] and V[g]
 - (ii) $V[f^2 + g^2]$
 - (i) V[fg]
 - (ii) V[V(f)]
- 2. Define p –differential forms on \mathbb{R}^3 . Evaluate the l-form $\phi = x^2 dx - y^2 dz$ on
 - (i) $V = xU_1 + yU_2 + zU_3$
 - (ii) $W = xy(U_1 U_2) + yz(U_1 U_3)$

$$(\text{iii})\frac{1}{x}V + \frac{1}{y}W.$$

- 3. Define
 - (i) Exterior derivative of a 1-form on \mathbb{R}^3 .
 - (ii) A mapping from \mathbb{R}^m to \mathbb{R}^n
- 4. Briefly explain the effect of the mapping $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ on \mathbb{R}^3 , where $F(u, v) = (u^2 v^2, 2uv)$ and u, v are coordinate functions of \mathbb{R}^2 .
- 5. Briefly explain the effect of the mapping $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ on \mathbb{R}^3 , where $F(u, v) = (u^2 v^2, 2uv)$ and u, *v* are coordinate functions of \mathbb{R}^2 .

If $F(u, v) = (u^2 - v^2, 2uv)$, find all the points *p* for which

- 6. Write Frenet equations for unit speed curves and derive the same
- 7. Consider the unit speed curve

 $\beta(s) = \left(\frac{(1+s)^{3/2}}{3}, \frac{(1-s)^{3/2}}{3}, \frac{s}{\sqrt{2}}\right)$ Find the Frenet apparatus for the same.

- 8. Prove the following
 - (i) $\nabla_{av_p+bw_p}X = a\nabla_{v_p}X + b\nabla_{w_p}X$ (ii) $\nabla_{v_p}(aX + bY) = a\nabla_{v_p}X + b\nabla_{w_p}Y$ (iii) $\nabla_{v_p}(X.Y) = \nabla_{v_p}X.Y(p) + X(p).\nabla_{v_p}Y$ $\nabla_{v_p}(fX) = v_p(f)X(p) + f(p)\nabla_{v_p}X$
- 9. Define
 - (i) An isometry of \mathbb{R}^3
 - (ii) Translation mapping
- 10. Further prove that every translation is an isometry and the composite mapping G°F of two isometries 'G' and 'F' is again an isometry.
- 11. Define a co-ordinate patch and a proper patch in \mathbb{R}^3 . Prove that the surface *M* abtained by translating a regular curve along some line l' is a surface in \mathbb{R}^3
- 12. Explain the parametrization of Torus in \mathbb{R}^3 . Further use the parametrization to show that curve $(z-2)^2 + y^2 = 1$ revolved around z-axis is a Torus
- 13. Establish that the stereographic projection of the punctured sphere Σ onto the plane is a mapping
- 14. Let $F: M \to N$ be a mapping of surfaces and let ξ and η be p -forms on N then prove that

(i)
$$F^*(\xi + \eta) = F^*(\xi) + F^*(\eta)$$

(ii) $F^*(\xi \Lambda \eta) = F^*(\xi) \Lambda F^*(\eta)$

$$F^*(d\xi) = d(F^*(\xi))$$

- **15.** Define shape operator and find the shape operators of Plane (ii) Cylinder
- 16. Define Gaussian curvature and mean curvature of a surface in \mathbb{R}^3 . Under what conditions do we call a surface flat or minimal? Explain.
- 17. Show that

(i)
$$S(v) \times S(w) = K(p)(v \times w)$$

- 18. $(S(v) \times S(w)) + (v \times S(w)) = 2(H(p))(v \times w)$ where the terms carry their usual meaning.
- 19. Compute the Gaussian and mean curvature of a saddle surface
- 20. Show that helicoid is a minimal surface.
- 21. Define (i) Tangent vector (ii) Vector field in \mathbb{R}^3 .

- 22. Let $V_1 = U_1 xU_3$, $V_2 = U_2$, $V_3 = xU_1 + U_3$, then express $xU_1 + yU_2 + zU_3$ as a linear combination of V_1 , V_2 , V_3
- 23. Define directional derivative of a real valued function on \mathbb{R}^3 .

Let v_p and w_p be two tangent vectors to \mathbb{R}^3 at p, f and g be real valued differentiable functions on \mathbb{R}^3 and $a, b \in \mathbb{R}$, then, prove that

(j) $[av_p + bw_p]f = a v_p[f] + bw_p[f]$

(jj)
$$v_p[af+bg] = av_p[f] + bv_p[g]$$

$$v_p(f.g) = v_p[f].g(p) + f(p).v_p[g]$$

24. Define reparametrization of a curve in \mathbb{R}^3 . Further explain the concept of

instantaneous velocity of curve by visualizing it as a moving point.

- **25.** Explain how a straight line and a helix are curves in \mathbb{R}^3 ?
- **26.** If ϕ and ψ are l-forms than prove that $d(\phi \wedge \psi) = d\phi \wedge \psi = \phi \wedge \psi$.
- **27.** State Frenet formulae. Further explain the geometrical and physical meanings of all the Frenet apparatus, T, N, B, κ, τ .
- **28.** Find the Frenet apparatus for the unit speed helix $\beta(s) =$

$$\left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right)$$
 where $c = \sqrt{a^2 + b^2}$.

- **29.** If $C: \mathbb{R}^3 \to \mathbb{R}^3$ is an orthogonal transformation then show that *C* is an isometry on \mathbb{R}^3 .
- **30.** Compute connection forms and connection equations of cylindrical frame fields given by $E_1 = cos\theta U_1 + sin\theta U_2$, $E_2 = sin\theta U_1 + cos\theta U_2$, $E_3 = U_3$.
- **31.** Prove that a unit sphere Σ is a surface in \mathbb{R}^3 .
- **32.** Write a short note on patch computations including details of u and v parameter curves and partial velocities. Further establish the parametrization of a surface obtained by revolving a curve around an axis.
- **33.** Define rulings of a surface. Show that the Saddle surface M: z = xy is a doubly ruled surface.
- **34.** Let *M* be a right circular cone parametrized by $X(u, v) = (v \cos u, v \sin u, v)$
- **35.** Let α be a curve such that $\alpha(t) = (t\sqrt{2}, e^t)$ on *M* the find $\alpha'(t)$ in terms of X_u and X_v. Also show that at each point of α, α' bisects the angle between X_u and X_v.
- **36.** If *p* is an umbilic point on a surface *M* than porve that the

shape operator *S* at *p* is just a scalar multiplication by the normal curvature

$$K=K_1=K_2.$$

- **37.** If *p* is a non umbilic point then prove that there exists exactly two principal directions which are orthogonal and further prove that if e_1 and e_2 are principal vendors in these directions them $S(e_1) = ke_1 \text{ and } S(e_2) = k_2 e_2$
- **38.** Define normal curvature of a surface in \mathbb{R}^3 . Brief on how does determining the normal section for a surface explain the shape of surface in \mathbb{R}^3
- **39.** Compute the Gaussian and mean curvature, of a helicoid.
- **40.** Define geodesics of a surface in \mathbb{R}^3 . Obtain the geodesics for a plane, sphere and cylinder in \mathbb{R}^3 .