K.L.E Society's
S. Nijalingappa College

II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Differential Geometry

1. Given $V=y^{2} U_{1}-x U_{3}, f-x y, g=z^{3}$, find
(i) $V[f]$ and $V[g]$
(ii) $V\left[f^{2}+g^{2}\right]$
(i) $V[f g]$
(ii) $V[V(f)]$
2. Define p-differential forms on \mathbb{R}^{3}.

Evaluate the l-form $\phi=x^{2} d x-y^{2} d z$ on
(i) $\quad V=x U_{1}+y U_{2}+z \mathrm{U}_{3}$
(ii) $W=x y\left(U_{1}-U_{2}\right)+y z\left(U_{1}-U_{3}\right)$
(iii) $\frac{1}{x} V+\frac{1}{y} W$.
3. Define
(i) Exterior derivative of a 1 -form on \mathbb{R}^{3}.
(ii) \quad A mapping from \mathbb{R}^{m} to \mathbb{R}^{n}
4. Briefly explain the effect of the mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ on \mathbb{R}^{3}, where $F(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$ and u, vare coordinate functions of \mathbb{R}^{2}.
5. Briefly explain the effect of the mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ on \mathbb{R}^{3}, where $F(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$ and u, vare coordinate functions of \mathbb{R}^{2}.

If $F(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$, find all the points p for which
6. Write Frenet equations for unit speed curves and derive the same
7. Consider the unit speed curve
$\beta(s)=\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}\right)$ Find the Frenet apparatus for the same.
8. Prove the following
(i) $\nabla_{a v_{p}+b w_{p}} X=a \nabla_{v_{p}} X+b \nabla_{w_{p}} X$
(ii) $\nabla_{v_{p}}(a X+b Y)=a \nabla_{v_{p}} X+b \nabla_{w_{p}} Y$
(iii) $\nabla_{v_{p}}(X . Y)=\nabla_{v_{p}} X . Y(p)+X(p) \cdot \nabla_{v_{p}} Y$
$\nabla_{v_{p}}(f X)=v_{p}(f) X(p)+f(p) \nabla_{v_{p}} X$
9. Define
(i) An isometry of \mathbb{R}^{3}
(ii) Translation mapping
10. Further prove that every translation is an isometry and the composite mapping $\mathrm{G}^{\circ} \mathrm{F}$ of two isometries ' G ' and ' F ' is again an isometry.
11. Define a co-ordinate patch and a proper patch in \mathbb{R}^{3}.Prove that the surface M abtained by translating a regular curve along some line ${ }^{\prime} l$ ' is a surface in \mathbb{R}^{3}
12. Explain the parametrization of Torus in \mathbb{R}^{3}. Further use the parametrization to show that curve $(z-2)^{2}+y^{2}=1$ revolved around z-axis is a Torus
13. Establish that the stereographic projection of the punctured sphere Σ onto the plane is a mapping
14. Let $F: M \rightarrow N$ be a mapping of surfaces and let ξ and η be p-forms on N then prove that
(i) $\quad F^{*}(\xi+\eta)=F^{*}(\xi)+F^{*}(\eta)$
(ii) $\quad F^{*}(\xi \wedge \eta)=F^{*}(\xi) \Lambda F^{*}(\eta)$

$$
F^{*}(d \xi)=d\left(F^{*}(\xi)\right.
$$

15. Define shape operator and find the shape operators of

Plane (ii) Cylinder
16. Define Gaussian curvature and mean curvature of a surface in \mathbb{R}^{3}. Under what conditions do we call a surface flat or minimal? Explain.
17. Show that
(i) $S(v) \times S(w)=K(p)(v \times w)$
18. $(S(v) \times S(w))+(v \times S(w))=2(H(p))(v \times w)$ where the terms carry their usual meaning.
19. Compute the Gaussian and mean curvature of a saddle surface
20. Show that helicoid is a minimal surface.
21. Define (i) Tangent vector (ii) Vector field in \mathbb{R}^{3}.
22. Let $V_{1}=U_{1}-x U_{3}, V_{2}=U_{2}, V_{3}=x U_{1}+U_{3}$, then express $x U_{1}+y U_{2}+z U_{3}$ as a linear combination of V_{1}, V_{2}, V_{3}
23. Define directional derivative of a real valued function on \mathbb{R}^{3}.

Let v_{p} and w_{p} be two tangent vectors to \mathbb{R}^{3} at p, f and g be real valued differentiable functions on \mathbb{R}^{3} and $a, b \in \mathbb{R}$, then, prove that
(j) $\quad\left[a v_{p}+b w_{p}\right] f=a v_{p}[f]+b w_{p}[f]$
(jj) $\quad v_{p}[a f+b g]=a v_{p}[f]+b v_{p}[g]$
$v_{p}(f \cdot g)=v_{p}[f] \cdot g(p)+f(p) \cdot v_{p}[g]$
24. Define reparametrization of a curve in \mathbb{R}^{3}. Further explain the concept of instantaneous velocity of curve by visualizing it as a moving point.
25. Explain how a straight line and a helix are curves in \mathbb{R}^{3} ?
26. If ϕ and ψ are l-forms than prove that $d(\phi \Lambda \psi)=d \phi \Lambda \psi=\phi \Lambda \psi$.
27. State Frenet formulae. Further explain the geometrical and physical meanings of all the Frenet apparatus, T, N, B, κ, τ.
28. Find the Frenet apparatus for the unit speed helix $\beta(s)=$ $\left(\operatorname{acos} \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right)$ where $c=\sqrt{a^{2}+b^{2}}$.
29. If $C: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an orthogonal transformation then show that C is an isometry on \mathbb{R}^{3}.
30. Compute connection forms and connection equations of cylindrical frame fields given by $E_{1}=\cos \theta U_{1}+\sin \theta U_{2}, E_{2}=\sin \theta U_{1}+\cos \theta U_{2}, E_{3}=U_{3}$.
31. Prove that a unit sphere Σ is a surface in \mathbb{R}^{3}.
32. Write a short note on patch computations including details of u and v parameter curves and partial velocities.Further establish the parametrization of a surface obtained by revolving a curve around an axis.
33. Define rulings of a surface. Show that the Saddle surface $M: z=x y$ is a doubly ruled surface.
34. Let M be a right circular cone parametrized by $X(u, v)=(v \cos u, v \sin u, v)$
35. Let α be a curve such that $\alpha(t)=\left(t \sqrt{2}, e^{t}\right)$ on M the find $\alpha^{\prime}(t)$ in terms of X_{u} and X_{v}. Also show that at each point of α, α^{\prime} bisects the angle between X_{u} and X_{v}.
36. If p is an umbilic point on a surface M than porve that the
shape operator S at p is just a scalar multiplication by the normal curvature

$$
K=K_{1}=K_{2}
$$

37. If p is a non umbilic point then prove that there exists exactly two principal directions which are orthogonal and further prove that if e_{1} and e_{2} are principal vendors in these directions them $\mathrm{S}\left(e_{1}\right)=k e_{1} \operatorname{andS}\left(e_{2}\right)=k_{2} e_{2}$
38. Define normal curvature of a surface in \mathbb{R}^{3}. Brief on how does determining the normal section for a surface explainthe shape of surface in \mathbb{R}^{3}
39. Compute the Gaussian and mean curvature, of a helicoid.
40. Define geodesics of a surface in \mathbb{R}^{3}. Obtain the geodesics for a plane, sphere and cylinder in \mathbb{R}^{3}.
