K.L.E Society's
 S. Nijalingappa College
 II BLOCK RAJAJINAGAR, BENGALURU -10
 PG Department of Mathematics QUESTION BANK

Elementary number Theory:

1 State well ordering principle and hence prove the division algorithm
2 State and prove Euclidean Algorithm

3 Define relatively prime integers and hence prove that two integers a and b with atleastone of them is different from zero are relatively prime if and only if there exist integers x and y such that $1=a x+b y$

4 Find the GCD between 1745 and 1485.
5 Prove that if $k>0$ then $\operatorname{gcd}(k a, k b)=\operatorname{gcd}(a, b)$.

6 State and prove fundamental theorem of arithmetic
7 Is the Linear Diophantine Equation $33 x+14 y=115$ can be solved ?

8 Find the value of x and y such that $172 x+20 y=1000$.
9 a) Define followings
i. Quadratic residue.
ii. Legedreesym
iii. Jacobi symbol

10 State and Prove gauss Lemma
11 State and prove Euler-Fermat Theorem.
12 State and prove Chainees remainder thorem
13 State and prove Wolstenholme's Theorem.

14 Show that the following set are reduced residue system $\{1,5,7,11\}$ under mod 15.
15 State and prove Fermats Last Theorem
16 State well ordering principle and hence prove the division algorithm
17 Define relatively prime integers and hence prove that two integers a and b with atleastone of them is different from zero ,the for a positive integer d then $\mathrm{d}=$ $\operatorname{gcd}(a, b)$ iff
i. d / a and d / b
ii. whenever c / a and c / b the c / d

18 Prove that for positive integer a and $\mathrm{b}, \operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$.
19 Determine all the solutions in the positive of the integers of the Diophantine Equation $1485 x+1745 y=15$

20 Define prime numbers. Use Euclidian algorithm to obtain integrs x and y for $\operatorname{gcd}(3024,12378)$

21 State and prove Fundamental Theorem of Arithmetic
22 Define Fermat and Mersenne Primes. Prove that there are infinitely primes.

