

PG Department of Mathematics QUESTION BANK

Functional Analysis

- 1. Define a normed linear space. Prove that addition and scalar multiplication in the normed linear space V are continuous
- **2.** Define Banach space. Show that a real line \mathbb{R} is Banach space.
- 3. Let *N* and *N*' be normed linear spaces with the same scalars and a linear transformation $T: N \rightarrow N'$. Then show that the following are equivalent to each other: 7
 - (i) T is continuous on N.
 - (ii) T is continuous at the origin.
 - (i) T is bounded.
- 4. Let *N* be a non-zero normed linear space and $M = \{x/x \in N \text{ and } \|x\| = 1\}$. Then prove that *N* is a Banach space if and only if *M* is complete.
- 5. State and prove Hanh Banach theorem for real normed linear space.
- 6. Prove that N^* separates vectors in N, where N^* is the conjugate space of N.
- 7. State open mapping theorem and deduce closed graph theorem.
- 8. If *P* is a projection on a Banach space *B* and *M* and *N* are its range and null spaces respectively, then show that *M* and *N* are closed linear subspaces of *B* such that $B = M \oplus N$.
- 9. State and prove that parallelogram law and polarization identity holds in a Hilbert space.
- **10.** Let *M* be a closed linear subspace of a Hilbert space *H*. Let $x \in H$ with $x \notin M$ and d = d(x, M). Then show that there exists a unique $y_o \in M$ such that $||x y_0|| = d$.
- 11. If *M* is a closed linear subspace of a Hilbert space *H*, then prove that $H = M \bigoplus M^{\perp}$, where M^{\perp} is an orthogonal complement of *M*.
- 12. Define complete orthonormal set. Let *H* be a Hilbert space and let $\{e_i\}$ be an orthonormal set in *H*. Then show that the following conditions are equivalent to one another.
 - i. $\{e_i\}$ is complete.

ii. $x \perp \{e_i\} \Rightarrow x = 0.$

iii. If x is an arbitrary vector in H, then $x = \sum_{i} \langle x, e_i \rangle e_i$.

iv. If x is an arbitrary vector in H, then $||x||^2 = \sum_i |\langle x, e_i \rangle|^2$.

- 13. Define self adjoint operator on a Hilbert space *H*. If A_1 and A_2 are self adjoint operators on *H*, then show that A_1A_2 is self adjoint if and only if $A_1A_2 = A_2A_1$.
- 14. If T is an arbitrary operator on a Hilbert space, then prove the following:
 - i. T = 0 if and only if $\langle Tx, y \rangle = 0$, for all $x, y \in H$
 - ii. T = 0 if and only if $\langle Tx, x \rangle = 0$, for all $x, y \in H$.
- 15. If N_1 and N_2 are normal operators on a Hilbert space *H* with the property that either of them commutes with the adjoint of other, then prove that $N_1 + N_2$ and N_1N_2 are normal.
- 16. If *P* is a projection on a Hilbert space *H* with range *M* and null space *N*, then show that *M* is orthogonal to *N* if and only if *P* is self adjoint and in this case $N = M^{\perp}$, where M^{\perp} is the orthogonal complement of *M*
- 17. State and prove
- 18. Cauchy Schwartz inequality (ii) Minkowski inequality
- 19. Show that the collection B(X) of all bounded functions on a set X is a complete normed linear space.
- 20. Show that if $T: N \to N'$ is a linear transformation between normed linear spaces N and N', then prove that the following are equivalent.
- (i) T is continuous
- (ii) T is continuous at the origin
- 21.. Let *M* be a closed linear subspace of a normed linear space *N*. Show that $\frac{N}{M}$ is a normed linear space with the norm defined by $|| x + M || = inf \{|| x + m || / m \in M\}$. Also if *N* is a Banach space then prove that $\frac{N}{M}$ is also a Banach space.
- 22. If $S: N \to N'$ is a continuous linear transformation and M a null space. Show that Sinduces a natural linear transformation S' of $\frac{N}{M}$ to N' such that ||S|| = ||S'||.
- 23. Let *M* be a linear subspace of a normed linear space *N*. If $x_0 \in N$ with $x_0 \notin M$ and

 $M_0 = M + [x_0]$, then prove that f can be extended to a functional f_0 on M_0 such that $||f_0|| = ||f||$.

- 24. If N is a normed linear space and $x_0 \in N, x_0 \neq 0$, then prove that there is a $f_0 \in N^*$ with $|| f_0 || = 1$. Hence deduce that N^* separates vectors in N.
- 25. Prove that there is a natural imbedding of N into N^{**} by the isometricisomorphism $\varphi: N \to N^{**}$ defined by $\varphi(x) = F_x$, for all x in N where $F_x(f) = f(x) \forall f$ in N^*
- 26. State and prove closed graph theorem
- 27. Show that a closed convex subset *C* of a Hilbert space *H* contains a unique vector of smallest norm
- 28. If B is a complex Banach space whose norm obeys the parallelogram law and if an inner product is defined on B by 4 < x, y >= || x + y ||² || x y ||² + i || x + iy ||² i || x iy ||² for all x, y ∈ B, then show that B is a Hilbert space.
- 29. State and prove Gram Schmidt orthogonalizationtheorem
- 30. State and prove Bessel's inequality.
- 31. If A_1 and A_2 are self-adjoint operators on H, then prove that their product A_1A_2 is selfadjoint if and only if $A_1A_2 = A_2A_1$.
- 32. If 0 and *I* are zero and identity operators on *H*, then prove that $0^* = 0$ and $I^* = I$. Hence show that if *T* is non – singular operator on *H* then T^* is also non – singular
- 33. Let T be a normal operator on a Hilbert space H and f a polynomial with complex coefficients. Then prove that the operator f(T) is normal.
- 34. If *T* is an operator on a Hilbert space *H*, then prove that the following conditions are all equivalent to one another:
 - i) $T^*T = I$
 - ii) $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in H$
 - || Tx || = || x ||, for all $x \in H$.
- 35. If $P_1, P_2, ..., P_n$ are projections on closed linear subspaces $M_1, M_2, ..., M_n$ of a Hilbert space H, then prove that $P_1 + P_2 + ... + P_n$ is a projection if and only if P_i 's are pairwise orthogonal.
- 36. State and prove spectral theorem.