BENGALURU CITY UNIVERSITY I SEMESTER B.Sc. MATHEMATICS(CORE) MODEL QUESTION PAPER-2 (2021-22 onwards) NEP

Time: 3hours

11.

Max. Marks: 60

I. Answer any SIX questions

(3x4=12)

- 1. Find the value of λ for which the system of equations 7x+4y+3z=0, $x+2y+\lambda z=0$, and x+3y+2z=0 has a non-trivial solution.
- 2. Find the eigen values of the matrix $\begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$
- 3. Find the nth derivative of $e^{2x} \sin^2 x$.

4. If
$$u = x^2 yz$$
 Prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

- 5. Evaluate $\lim_{x \to 0} \frac{|x|}{x}$
- 6. State Taylor's theorem for function of two variables.
- 7. Verify Rolle's theorem for the function $f(x) = x^2 6x + 8$ in [2,4].

8. Evaluate
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

Answer any THREE questions

9. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}$ using elementary transformations.

10. Find λ , μ such that the system of equations x + 3y + 4z = 5, x + 2y + z = 3 and $x + 3y + \lambda z = \mu$ has (i) no-solution (ii) Unique solution (iii) many solutions.

11. Find the eigen values and the corresponding eigen vectors of the matrix

1	0	0	
0	2	1	
2	0 2 0	3_	

12. Verify the Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and

hence find A^{-1}

13. By using Cayley-Hamilton theorem. Find the adjoint of the matrix

[1	2	1]
0	1	-1
3	-1	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

Answer any THREE questions III.

14. Discuss the continuity of
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x \neq 2\\ 5, & \text{if } x = 2 \end{cases}$$
 at x=2.

- 15. Discuss the differentiability of f(x) = |x| at x=0
- 16. Prove that a function which is a continuous in a closed interval attains its bounds in the interval.
- 17. State and prove Leibnitz-Theorem for finding the nth derivative of product of two functions

18. Find the nth derivative of (a) $\cosh 2x \cos^2 x$ (b) $\frac{1}{6x^2 - 5x + 1}$.

IV. Answer any THREE questions

- 19. State and prove Intermediate value theorem.
- 20. State and prove Lagrange's mean value theorem.
- 21. Using Maclaurin's expansion, prove that $log(1+x) = 1 \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \cdots$
- 22. Expand the function $f(x) = e^x$ around x=1 up to the term with x^5 by

using Taylor's series.

23. Evaluate:
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2x}{x^2 \sin(x)}$$

V. Answer any THREE questions

24. If $u = (x - y)^n + (y - z)^n + (z - x)^n$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

25. State and prove Euler's theorem on homogeneous functions. 26. If $u = x + 3y^2 - z^3$, $v = 2x^2 - yz$, $w = 2z^2 - xy$ Evaluate $\frac{\partial(u, v, w)}{\partial(x, v, z)}$ at (1,-1, 0). 27. Expand $2xy^2 + 5y - 1$ in powers of (x + 1) and (y + 2) using Taylor's theorem.

28. Find the three numbers x, y, z such that x+y+z=1 and xy+yz+zx is maximum.

Chairperson Department of Mathematics Bengaluru City University Central College Campus Bengaluru-560001.

(3x4=12)

(3x4=12)