## BENGALURU CITY UNIVERSITY <br> I SEMESTER B.Sc. MATHEMATICS(CORE) <br> MODEL QUESTION PAPER - 3 (2021-22 onwards) NEP

Max. Marks: 60
Time: 3 hrs
$(6 \times 2=12)$

## I Answer any SIX questions.

1. Find the value $k$ in order that the matrix $A=\left[\begin{array}{ccc}6 & k & -1 \\ 2 & 3 & 1 \\ 3 & 4 & 2\end{array}\right]$ is of rank 2 .
2. Define eigen values and eigen vectors of a square matrix.
3. Find the nth derivative of $\log _{e}(2 x+3)$.
4. If $z=\cos ^{-1}(x y)$, find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$
5. State Lagrange's mean value theorem.
6. Name the type of discontinuity of the function

$$
f(x)=\left\{\begin{array}{ll}
3 x+1, & x>1 \\
2 x-1, & x \leq 1
\end{array} \text { at } x=1\right.
$$

7. Show that $\mathrm{f}(x, y)=x^{3}+y^{3}-3 x y+1$ is minimum at the point $(1,1)$.
8. Evaluate $\lim _{x \rightarrow 0} x^{x}$.

## II Answer any THREE questions.

$$
(3 \times 4=12)
$$

9. Find the rank of the matrix $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2\end{array}\right]$ by reducing it to normal form
10. Show that the equations $x+y+z=6, x+2 y+3 z=14$ and $x+4 y+7 z=30$ are consistent and solve them.
11. Find the eigen values and corresponding eigenvectors of the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
12. If $\lambda$ is an eigen value of a square matrix $A$ with $X$ as its corresponding eigen vector then Prove that (i) $\lambda^{2}$ is an eigen value of $A^{2}$
(ii) $\frac{1}{\lambda}$ is an eigen value of $A^{-1}$ provided $A$ is non-singular.
(iii) $\frac{1}{\lambda}|A|$ is an eigen value of $\operatorname{adj}(\mathrm{A})$, provided A is non-singular.
13. If $A=\left[\begin{array}{rrr}2 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ then show by Cayley Hamilton theorem $A^{4}=I$ and $A^{3}=A^{-1}$.

III Answer any THREE questions.
14. Prove that a function which continuous in a closed interval takes every value between its bounds at least once.
15. Discuss continuity of $f(x)=\frac{1}{1+e^{\left(\frac{-1}{x}\right)}}$ if $x \neq 0$ and $f(0)=0$ at $x=0$.
16. Discuss the differentiability of $f(x)=\left\{\begin{array}{l}1-2 x, \text { for } x<0 \\ 1, \quad \text { for } 0 \leq x \leq 1 \\ 2 x-1,\end{array}\right.$ for $x>1$ at $\mathrm{x}=0$
17. Find the nth derivative of $\frac{x^{2}-4 x+1}{x^{3}+2 x^{2}-x-2}$
18. Using Leibnitz rule, find the $n$th derivative of $\left(x^{2}+x+1\right)(\cos 2 x)(\cos 3 x)$

## IV Answer any THREE questions.

$$
(3 \times 4=12)
$$

19. State and prove Cauchy's mean value theorem.
20. Expand $\tan ^{-1}(x)$ in the powers of $\left(x-\frac{\pi}{4}\right)$ by Taylor's theorem.
21. Expand $\log (1+\sin x)$ up to the term containing $x^{4}$ using Maclaurin's series.
22. Evaluate $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{2} \tan (x)}$
23. Evaluate $\lim _{x \rightarrow 0}(1+\sin x)^{\cot x}$.

V Answer any THREE questions.
24. If $z=\sin (a x+y)+\cos (a x-y)$, Prove that $\frac{\partial^{2} z}{\partial x^{2}}=\mathrm{a}^{2} \frac{\partial^{2} z}{\partial y^{2}}$
25. If $\mathrm{u}=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$
26. If $x=u v w, y=u v+v w+w u$ and $z=u+v+w$, Prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=(u-v)(v-w)(w-u)$
27. Expand $e^{x} \cos y$ near the point $(1, \pi / 4)$ by Taylor's theorem.
28. Using the method of Lagrange's multipliers prove that the maximum volume of a rectangular box with given surface area.


