BENGALURU CITY UNIVERSITY I SEMESTER B.Sc. MATHEMATICS(CORE) MODEL QUESTION PAPER - 3 (2021-22 onwards) NEP

Max. Marks: 60

Time: 3 hrs

 $(6 \times 2 = 12)$

I Answer any SIX questions.

1. Find the value k in order that the matrix $A = \begin{bmatrix} 6 & k & -1 \\ 2 & 3 & 1 \\ 3 & 4 & 2 \end{bmatrix}$ is of rank 2.

2. Define eigen values and eigen vectors of a square matrix.

3. Find the nth derivative of $log_e(2x+3)$.

4. If $z = cos^{-1}(xy)$, find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

5. State Lagrange's mean value theorem.

6. Name the type of discontinuity of the function

$$f(x) = \begin{cases} 3x + 1, & x > 1 \\ 2x - 1, & x \le 1 \end{cases} \text{ at } n = 1$$

7. Show that $f(x, y)=x^3+y^3-3xy+1$ is minimum at the point (1,1).

8. Evaluate $\lim_{x \to 0} x^x$.

II Answer any THREE questions.

$$(3 \times 4 = 12)$$

 $(3 \times 4 = 12)$

	[1	1	1	2	
9. Find the rank of the matrix	2	1	-3	-6	by reducing it to normal form
	3	-3	1	2 _	

10. Show that the equations x + y + z = 6, x + 2y + 3z = 14 and x + 4y + 7z = 30 are consistent and solve them.

11. Find the eigen values and corresponding eigenvectors of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$

- 12. If λ is an eigen value of a square matrix A with X as its corresponding eigen vector then Prove that (i) λ^2 is an eigen value of A^2
- (ii) $\frac{1}{\lambda}$ is an eigen value of A^{-1} provided A is non-singular. (iii) $\frac{1}{\lambda}|A|$ is an eigen value of adj(A), provided A is non-singular. 13. If $A = \begin{bmatrix} 2 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ then show by Cayley Hamilton theorem $A^4 = I$ and $A^3 = A^{-1}$.

III Answer any THREE questions.

14. Prove that a function which continuous in a closed interval takes every value between its bounds at least once.

15. Discuss continuity of $f(x) = \frac{1}{1+e^{\left(\frac{-1}{x}\right)}}$ if $x \neq 0$ and f(0)=0 at x=0.

16. Discuss the differentiability of f(x)= $\begin{cases} 1-2x, & \text{for } x < 0\\ 1, & \text{for } 0 \le x \le 1\\ 2x-1, & \text{for } x > 1 \end{cases}$ at x=0

17. Find the nth derivative of $\frac{x^2 - 4x + 1}{x^3 + 2x^2 - x - 2}$

18. Using Leibnitz rule, find the nth derivative of $(x^2 + x + 1)(\cos 2x)(\cos 3x)$

IV Answer any THREE questions.

$$(3 \times 4 = 12)$$

19. State and prove Cauchy's mean value theorem.

20. Expand tan⁻¹ (x) in the powers of $(x - \frac{\pi}{4})$ by Taylor's theorem.

21. Expand log(1+sin x) up to the term containing x⁴ using Maclaurin's series.

22. Evaluate $\lim_{x \to 0} \frac{\tan(x) - x}{x^2 \tan(x)}$

23. Evaluate $\lim_{x\to 0} (1 + \sin x)^{\cot x}$.

V Answer any THREE questions.

 $(3 \times 4 = 12)$

24. If
$$z = \sin(ax + y) + \cos(ax - y)$$
, Prove that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$

25. If
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
 show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$

26. If x = uvw, y = uv + vw + wu and z = u + v + w, Prove that

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = (u - v)(v - w)(w - u)$$

27. Expand $e^x \cos y$ near the point $(1, \pi/4)$ by Taylor's theorem.

28. Using the method of Lagrange's multipliers prove that the maximum volume of a rectangular box with given surface area.

airperson

Department of Mathematics Bengaluru City University Central College Campus Bengaluru-560 001.