## BENGALURU CITY UNIVERSITY

## I Semester B.Sc, Mathematics- Open Elective <br> Mathematics-I <br> Model Question Paper -B

Instructions: Answer all questions
Time:2Hrs.

Max. Marks:60

## I. Answer any 5 questions:

$$
(5 \times 3=15)
$$

1. Reduce the matrix $\left[\begin{array}{rrr}1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14\end{array}\right]$ to $\left[\begin{array}{rrr}1 & 3 & -2 \\ 0 & -7 & 8 \\ 0 & 0 & 0\end{array}\right]$ using elementary transformations.
2. Find the value of $\lambda$ for which the system of equations

$$
\begin{aligned}
& 7 x+4 y+3 z=0 \\
& x+2 y+\lambda z=0 \text { has non trivial solutions. } \\
& x+3 y+2 z=0
\end{aligned}
$$

3. Find the eigen values of the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
4. Find the right hand limit of the function

$$
f(x)=\left\{\begin{array}{cc}
3 x-2, & \text { when } x \leq 1 \\
4 x^{2}-3 x, & \text { when } x>1
\end{array} \text { at } x=1\right.
$$

5. Examine the differentiability of the function

$$
f(x)=\left\{\begin{array}{cc}
x^{2}, & \text { when } x \leq 3 \\
6 x-9, & \text { when } x>3
\end{array} \text { at } x=3\right.
$$

6. State Lagrange's Mean Value Theorem.
7. Write the formula to find the length of an arc of the curve $y=f(x)$ from $x=a$ to $x=b$
8. Find the area of the circle $x^{2}+y^{2}=a^{2}$ by using integration.
9. Write the formula for finding the volume of solid obtained by revolving the curve $y=f(x)$ about the $x$-axis between the lines $x=a$ and $x=b$.

## II. Answer any 3 Questions:

13. Find the rank of the matrix
$A=\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 3 & 1 \\ 1 & 2 & 3 & -1\end{array}\right]$, by reducing to the normal form.
14. Find the non-trivial solutions of the system of equations

$$
\begin{aligned}
& x+2 y+4 z=0 \\
& x+4 y+5 z=0 \\
& x+2 y+7 z=0
\end{aligned}
$$

15. For what values of $\lambda$ and $\mu$, the system of equations

$$
\begin{aligned}
& x+2 y+3 z=5 \\
& x+3 y-z=4 \\
& x+4 y+\lambda z=\mu
\end{aligned}
$$

have i) no solution ii) unique solution iii) infinitely many solutions
16. Find the eigenvalues and its corresponding eigenvectors of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]
$$

17. Verify Cayley-Hamilton's theorem for the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 7 \\
4 & 2 & 3 \\
2 & 2 & 1
\end{array}\right]
$$

## III. Answer any 3 Questions:

18. Examine the continuity of the function

$$
f(x)=\left\{\begin{array}{ll}
x+1, & \text { when } x \geq 1 \\
x^{2}+1, & \text { when } x<1
\end{array} \text { at } x=1\right.
$$

19. Examine the differentiability of the function

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x}\right), & \text { when } x \neq 0 \\
0, & \text { when } x=0
\end{array} \text { at } x=0\right.
$$

20. Verify Cauchy's Mean Value theorem for the functions $f(x)=x^{2}$
and $g(x)=x^{3}$ in $[1,2]$
21. Expand the function $\log _{e}(1+x)$ upto the third degree term by Maclaurin's Expansion.
22. Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\tan x}$ by L'Hospital's rule.
IV. Answer any 3 Questions:
23. Find the length of the arc of the curve $y=\log (\sec x)$ from $x=0$ to $x=\frac{\pi}{3}$.
24. Find the area of the loop of the curve $a y^{2}=x^{2}(a-x)$
25. Find the area bounded between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$.
26. Find the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
27. Find the volume of the solid generated by revolving the Astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about the $x$-axis.
