K.L.E Society's
S. Nijalingappa College
II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Mathematical Methods

1. Using Laplace transform find the solution of $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, t>0$ subjected to the condition $u(x, 0)=6 e^{-3 x}$.
2. Find the integral equation corresponding to the following differential equation with the given initial conditions:
$\frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+a_{2}(x) \frac{d^{n-2}}{d x^{n-2}}+\ldots+a_{n}(x) y=\phi(x)$,
where $a_{i}(x),(i=1,2 \ldots n)$ are continuous functions and the initial conditions are: $y(0)=C_{0}, y^{\prime}(0)=C_{1} \ldots y^{n-1}(0)=C_{n-1}$.
3. Prove that $u(x)=\cos 2 x$ is a solution of the integral equation $u(x)=\cos x+3 \int_{0}^{\pi} K(x, t) u(t) d t$, where the kernel $K(x, t)$ is given by

$$
K(x, t)= \begin{cases}\sin x \cos t, & 0 \leq x \leq t \\ \cos x \sin t, & t \leq x \leq \pi\end{cases}
$$

4. Form an integral equation corresponding to the differential equation

$$
y^{\prime \prime}-2 x y^{\prime}-3 y=0 ; y(0)=1, y^{\prime}(0)=0 .
$$

5. Explain the method of separable kernels to solve the homogeneous Fredholm integral equation of the second kind $y(x)=\lambda \int_{a}^{b} K(x, t) y(t) d t$.
6. Solve the following integral equation $u(x)=1+\lambda \int_{0}^{1}(x+t) u(t) d t$, by the method of successive approximation up to second order for $u_{0}(x)=1$.
7. Solve the Fredholm integral equation $y(x)=x+\int_{0}^{1 / 2} y(t) d t$ with the help of resolvent kernel.
8. Find the resolvent kernel of the Volterra integral equation $y(x)=f(x)+$ $\lambda \int_{a}^{x} K(x, t) y(t) d t w i t h$ the kernel $K(x, t)=1$.
9. Solve the integral equation $\int_{0}^{1} \frac{y(x)}{\sqrt{t-x}} d x=1+t+t^{2}$ by the method of Laplace transform.
10. Solve the one dimensional heat equation using Laplace transform subjected to the conditions $u(x, 0)=10 \sin 4 \pi x, \quad 0 \leq x \leq 5, u(0, t)=0=u(5, t), t \geq 0$.
11. Using Fourier transform find the solution of one-dimensional wave equation $\frac{\partial^{2} u}{\partial t^{2}}=$ $9 \frac{\partial^{2} u}{\partial x^{2}}$ subjected to the conditions: $u(0, t)=0=u(2, t), u(x, 0)=0.05 x(2-x)$ and $u_{t}(x, 0)=0$, where $0<x<2, t>0$.
12. Define homogenous Fredholm integral equation of second kind.

Solve $y(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) y(t) d t$.
13. Obtain the resolvent kernel and resolve the integral equation with the following kernel $k(x, y)=e^{x-y}$
14. Explain the method of successive approximation for a nonhomogenous Volterra integral equation of a second kind.
15. Show that $\varphi(x)=\frac{3}{4}(x+1)$ is a solution of the Volterra integral equation $\varphi(x)=$ $x+\frac{1}{2} \int_{-1}^{1}(t-x) \varphi(t) d t$ using Neumann series method.
16. Transform integral equation corresponding to: $y^{\prime \prime \prime}-2 x y=0 ; y(0)=\frac{1}{2}$, $y^{\prime \prime}(0)=y^{\prime}(0)=1$.
17. If $\varphi_{m}(x)$ and $\varphi_{n}(x)$ are fundamental functions of symmetric kernel $k(x, y)$ for the eigenvalues $\lambda_{m}, \lambda_{n}\left(\lambda_{m} \neq \lambda_{n}\right)$, then prove that $\int_{a}^{b} \varphi_{m}(x) \varphi_{n}(x) d x=0$
18. Find the asymptotic expansion of $\int_{0}^{x} \frac{\cos t}{t} d t$ as $x \rightarrow \infty$.
19. Derive Laplace method for obtaining the asymptotic behavior as $x \rightarrow \infty$ of the form $\int_{a}^{b} f(t) e^{x \varphi(t)} d t$.
20. Use method of stationary phase to find the leading order behavior of the integral $\int_{0}^{1} \cos \left(x t^{4}\right) \tan t d t$ as $t \rightarrow \infty$.
21. Find the solution of the initial value problem $y^{\prime \prime}+(1-\in x) y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$.
22. By using the method of matched asymptotic find the solution of the boundaryvalue problem $\in y^{\prime \prime}+(1+\epsilon) y^{\prime}+y=0$ with $y(0)=0, y(1)=1$.
23. Obtain the two-term perturbation solution for Duffing equation by applying Poincare-Lindstedt method.
24. Derive the Exponential WKB method.
25. Evaluate using Watson lemma: $I(x)=\int_{0}^{\pi / 2} e^{-x \operatorname{sint}} d t$
26. Solve the one dimensional wave equation using Fourier transform subject to the conditions $y(x, 0)=f(x), y(0, t)=0=y(L, t)$.
27. DefineFredholm integral equation. Solve $y(x)=1+\int_{0}^{1}\left(1+e^{x+t} y(t)\right) d t$.
28. Solve $\varphi(x)=1+\int_{0}^{x}(x-y) \varphi(y) d y$ by the method of successive approximation.
29. Determine the solution of the following integral equation $u^{\prime}+3 u+2 \int_{0}^{t} u(x) d x=2$, $u(0)=0$ using Laplace transform method.
30. Explain the method of Neumann series for a Kernel to obtain the solution of theFredholm integral equation of second kind.
31. Form an integral equation corresponding to the differential equation

$$
y^{\prime \prime \prime}-2 x y=0 ; y(0)=\frac{1}{2}, y^{\prime \prime}(0)=y^{\prime}(0)=1
$$

32. Define Hermitian kernel. Show that the eigenvalues of thesymmetric kernel are Find the asymptotic expansion of $\int_{0}^{x} t^{\frac{-1}{2}} e^{-t} d t$ as $x \rightarrow \infty$.
33. Use Laplace method to find the leading order behavior of $\int_{0}^{1} \operatorname{sint} e^{-x \sinh ^{4} t} d t$ as

$$
x \rightarrow \infty .
$$

34. State and prove Watson's lemma.
35. Evaluate using method of stationary phase: $\int_{0}^{\infty} e^{-x \sinh ^{2} t} d t$ as $x \rightarrow \infty$.
36. Find the uniformly valid solution of the boundary value problem $\in y^{\prime \prime}+y^{\prime}=a$ with $y(0)=0, y(1)=1$.
37. Obtain the two-term perturbation solution for Vander Pol equation by applying Poincare-Lindstedt method.
38. Derive the WKB approximation method.
39. Show that the nonlinear Ricatti equation has the second order linear differential equation with variable co-efficient.
40. Solve the integral equation
$\int_{0}^{\infty} F(x) \sin x p d x=\left\{\begin{array}{c}1,0 \leq p<1 \\ 2,1 \leq p<2 \\ 0, p \geq 2\end{array}\right.$ by the method of Fourier sine transform.
41. Evaluate the following using Hankel transformation
(i) $H\left[\frac{\cos a x}{x}, 0\right]$
(ii) $H\left[\frac{\operatorname{sinax}}{x}, 0\right]$.
42. Find the asymptotic approximation of the following integrals using Laplace method
(i) $I(x)=\int_{0}^{\pi / 2} e^{-x \sin h^{2} t} d t$ as $x \rightarrow \infty$.
(ii) $I(x)=\int_{-\pi / 2}^{\pi / 2}(t+2) e^{-x \cos t} d t$ as $x \rightarrow \infty$.
43. Find the leading term of the following integrals by using stationary phase method
(i) $I(x)=\int_{0}^{\pi / 2} e^{i x \cos t} d t$ as $x \rightarrow \infty$.
(ii) $I(x)=\int_{0}^{\infty} \cos \left(x t^{2}-t\right) d t$ as $x \rightarrow \infty$.
44. Apply regular perturbation method to solve the initial value problem $y^{\prime \prime}=-f(x) y ; y(0)=1, y^{\prime}(0)=1$.
45. Apply Poincare-Lindstedt method to find 2π periodic solution of $y^{\prime \prime}(t)+\varepsilon\left[y^{2}(t)-1\right] y^{\prime}(t)+y(t)=0 ; y(0)=a, y^{\prime}(0)=0$.
46. Find 1-term uniformly valid solution of $\varepsilon y^{\prime \prime}+(1+x) y^{\prime}+y=0 ; y(0)=1, y(1)=$ 1 by the method of inner and outer expansions.
47. Find a leading order WKB solution of the Schrodinger equation
$\varepsilon^{2} y^{\prime \prime}=Q(x) y(x), Q(x) \neq 0$. Hence, find the solution of initial value problem
$\varepsilon^{2} y^{\prime \prime}=\left(1+x^{2}\right)^{2} y(x) ; y(0)=0, y^{\prime}(0)=1$.
48. Find the general solution of Riccati's equation $\frac{d y}{d x}+P(x) y(x)+Q(x) y^{2}(x)=$ $R(x)$ if $y(x)=u(x)$ is a solution of this equation. Hence, solve $y^{\prime}=y^{2}+$ $(1-2 x) y+\left(x^{2}-x+1\right)$ if $y=x$ is one of the solutions.
49. Solve the following nonlinear differential equations:
(i) $y y^{\prime \prime}-\left(y^{\prime}\right)^{2}-a=0$ (put: $y^{\prime}=p$).
(ii) $y y^{\prime \prime}=a\left[y^{\prime}\right]^{2}\left(\right.$ put : $\mathrm{y}^{\prime}=p$).
