I SEMESTER B.Sc (Effective 2021-22 onwards) OPEN ELECTIVE - QUESTION BANK
 MATHEMATICS-I

MATRICES

Questions carrying 3marks

1. Define Symmetric \& Skew-Symmetric matrices \& give an example.
2. Define Equivalent matrices.
3. Define Echelon form of a matrix.
4. Define Rank of a matrix.
5. Define Normal form of a matrix.
6. Define Homogeneous and non-Homogeneous system of equations.
7. What are the necessary \& sufficient conditions for the system of non-homogeneous linear equations to be consistent?
8. Find the value of ' λ ' for which the system of equations $2 x-y+2 z=0$, $3 x+y-z=0 \& \lambda x-2 y+z=0$ has a non-trivial solution.
9. Define Eigen values and Eigen vectors of a square matrix.
10. Find the Eigen values of the following matrices
a) $\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right]$
c) $\left[\begin{array}{cc}5 & -1 \\ 4 & 9\end{array}\right]$
11. State Cayley-Hamilton's theorem.
12. Verify Cayley-Hamilton's theorem for the following matrices.
a) $\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$
b) $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$
13. Find the inverse of the following square matrices by using Cayley-Hamilton theorem
a) $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$
c) $\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$
14. Find ' k ' if the matrix $A=\left[\begin{array}{ccc}6 & k & -1 \\ 2 & 3 & 1 \\ 3 & 4 & 2\end{array}\right]$ is of rank 2

Questions carrying 5 marks

1. Reduce the following matrices into Row-reduced Echelon form and find its rank.
a) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 5 & 6 \\ 3 & 4 & 1 & 2 \\ 5 & 6 & 3 & 2\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5\end{array}\right]$
c) $\left[\begin{array}{cccc}2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$
d) $\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7\end{array}\right]$
2. Reduce the following matrices into Normal form and find its rank
a) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5\end{array}\right]$
c) $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 6 \\ 4 & 8 & 12\end{array}\right]$
d) $\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15\end{array}\right]$
3. Check the consistency of the following system of equations, if consistent then solve.
a) $x+y+z=6, x+2 y+3 z=14, x+4 y+7 z=30$
b) $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$
c) $x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2$
4. Find all the solutions of the following system of equations
a) $x+3 y-2 z=0,2 x-y+4 z=0, x-11 y+14 z=0$
b) $x+5 y+6 z=0,2 x+10 y+12 z=0,4 x+20 y+24 z=0$
5. Investigate for what values of λ, μ the equations
$x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$
have i) no solution ii) unique solution iii) many solutions
6. Find the values of λ and μ the equations
$x+3 y+4 z=5, x+2 y+z=3, x+3 y+\lambda z=\mu$ have i) no solution ii) unique solution iii) many solutions
7. For what values of λ the equations

$$
x+y+z=1, x+2 y+4 z=\lambda, x+4 y+10 z=\lambda^{2}
$$

have a solution and solve them completely in each case.
8. Find the real values of λ for which the system of equations
$x+2 y+3 z=\lambda x, 3 x+y+2 z=\lambda y, 2 x+3 y+z=\lambda z$
have non-trivial solution.
9. Find the Eigen values and its corresponding Eigen vectors of the following matrices.
a) $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
b) $\left[\begin{array}{ll}-3 & 8 \\ -2 & 7\end{array}\right]$
c) $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & -1\end{array}\right]$
10. Find the inverse of the following square matrices using Cayley-Hamilton's theorem
a) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
d) $\left[\begin{array}{ccc}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right]$

DIFFERENTIAL CALCULUS

Questions carrying 3 marks

1. Define limit of a function.
2. Define continuity of a function.
3. Define differentiability of a function.
4. Discuss the continuity of $f(x)=\left\{\begin{array}{l}3 x+1, x>1 \\ 2 x-1, x \leq 1\end{array}\right.$ at $x=1$
5. Discuss the continuity of $f(x)=\left\{\begin{array}{cc}\frac{1}{2}, & 0<x<\frac{1}{2} \\ 0, & x=\frac{1}{2} \\ -\frac{1}{2}, & \frac{1}{2}<x<1\end{array}\right.$ at $\mathrm{x}=\frac{1}{2}$
6. Discuss the differentiability of $f(x)=\left\{\begin{array}{cc}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ at $\mathrm{x}=0$
7. State Intermediate value theorem.
8. State Rolle's theorem.
9. State Lagrange's Mean Value theorem.
10. State Cauchy's Mean Value theorem.
11. State Taylor's theorem.

Questions carrying 5 marks

1. Evaluate
a) $\lim _{x \rightarrow 0}\left(\frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}\right)$
b) $\lim _{x \rightarrow 2}\left(\frac{x^{2}-3 x+2}{x-2}\right)$
2. If $f(x)=\left\{\begin{array}{cl}x^{2}, & \text { if } x \leq 2 \\ 8-2 x, & \text { if } x>2^{\prime}\end{array}\right.$ find $\lim _{x \rightarrow 2} f(x)$
3. If $f(x)=\left\{\begin{array}{ll}3-x^{2}, & \text { if } x<-2 \\ x^{2}-5, & \text { if } x>-2^{\prime}\end{array}\right.$ find $\lim _{x \rightarrow-2} f(x)$
4. Discuss the continuity of the following functions at the given points
a) $f(x)=\left\{\begin{array}{ll}x^{2}-1, & \text { for } x<1 \\ 0, & \text { for } x=1 \\ 1-\frac{1}{x}, & \text { for } x>1\end{array} \quad\right.$ at $x=1$
b) $f(x)=\left\{\begin{array}{ll}\frac{|x|}{x}, & \text { for } x \neq 0 \\ 1, & \text { for } x=0\end{array} \quad\right.$ at $x=0$
c) $f(x)=\left\{\begin{array}{ll}\frac{e^{\frac{1}{x^{2}}}}{1-e^{\frac{1}{x^{2}}}}, & \text { for } x \neq 0 \\ 1, & \text { for } x=0\end{array} \quad\right.$ at $x=0$
5. Discuss the differentiability of the following functions at the given points
a) $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right), & \text { for } x \neq 0 \\ 0, & \text { for } x=0\end{array}\right.$ at $x=0$
b) $f(x)=\left\{\begin{array}{cc}1-2 x, & \text { for } x<0 \\ 1, & \text { for } 0 \leq x \leq 1 \\ 2 x-1, & \text { for } x>1\end{array}\right.$ at $x=0, x=1$
c) $f(x)=\left\{\begin{array}{ll}x^{2}-1, & \text { for } x \geq 1 \\ 1-x, & \text { for } x<1\end{array} \quad\right.$ at $x=1$
d) $f(x)=\left\{\begin{array}{cl}1, & \text { for }-\infty<x<0 \\ 1+\sin (x), & \text { for } 0 \leq x<\frac{\pi}{2} \\ 2+\left(x-\frac{\pi}{2}\right)^{2}, & \text { for } \frac{\pi}{2} \leq x<\infty\end{array}\right.$ at $x=0$ \& $x=\frac{\pi}{2}$
6. Verify Rolle's theorem for the following functions in the given interval
a) $f(x)=x^{2}-6 x+8$ in $[2,4]$
b) $f(x)=e^{x} \sin (x)$
in $[0, \pi]$
c) $f(x)=\sin (x)-\cos (x)$
in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
d) $f(x)=x^{3}-3 x^{2}-x+3$ in $[1,3]$
7. Verify Lagrange's Mean Value Theorem for the following functions in the given interval
a) $f(x)=\sqrt{25-x^{2}}$
in $[-3,4]$
b) $f(x)=x^{2}-3 x+2$
in $[-2,3]$
c) $f(x)=\sin (x)$
in $\left[0, \frac{\pi}{2}\right]$
8. Verify Cauchy's Mean Value theorem for the following functions in the given interval.
a) $f(x)=\log (x)$
$\& g(x)=\frac{1}{x}$
in $[1, e]$
b) $f(x)=x^{3}$
$\& g(x)=x^{2}$
in $[1,3]$
9. Expand the following using Taylor Series
a) $f(x)=\log (\cos (x)) \quad$ about $x=\frac{\pi}{3}$ upto $4^{\text {th }}$ degree
b) $f(x)=2 x^{3}+7 x^{2}+x-1$ about $x=2$ upto $4^{\text {th }}$ degree
c) $f(x)=x^{5}+2 x^{4}-x^{2}+x-1$ in powers of $(x+1)$ upto $4^{\text {th }}$ degree
10. Expand the following functions(if possible) in an infinite series/Expand
using Maclaurin's Series upto $4^{\text {th }}$ Degree
a) $f(x)=\tan x$
b) $f(x)=e^{\sin x}$
c) $f(x)=\cos x$
d) $f(x)=\log (\sec x)$
e) $f(x)=\log (1+\sin x)$
f) $f(x)=e^{m \sin ^{-1} x}$
11. Evaluate using L'Hospital's Rule
a) $\lim _{x \rightarrow \infty}\left(x^{\frac{1}{x}}\right)$
b) $\lim _{x \rightarrow 0}\left(\frac{\tan x-x}{x^{2} \tan x}\right)$
c) $\lim _{x \rightarrow 0}\left(\frac{x-\sin x}{x^{3}}\right)$
d) $\lim _{x \rightarrow 0}(1+\sin x)^{\cot x}$
e) $\lim _{x \rightarrow 0}\left(\frac{x-\log (1+x)}{1-\cos x}\right)$
f) $\lim _{x \rightarrow 0}\left(\frac{e^{x}-e^{-x}-2 x}{x^{2} \sin x}\right)$
g) $\lim _{x \rightarrow 1}\left((2-x)^{\tan \left(\frac{\pi x}{2}\right)}\right)$

INTEGRAL CALCULUS

Questions carrying 3 marks

1. Write the formula to find the length of an arc of the curve $y=f(x)$ from $x=a$ to $x=b$
2. Find the area bounded by the x-axis \& the curve $y=c \cosh \left(\frac{x}{c}\right)$ between $x=0 \& x=c$
3. Find the area included between the parabola $y^{2}=4 a x \&$ its Latus Rectum $x=a$
4. Write the formula to find the area enclosed by the curve $y=f(x)$, the x -axis between $x=a \& x=b$
5. Write the formula to find the area enclosed by the curve $x=f(y)$, the y-axis between $y=c \& y=d$
6. Write the formula to find the surface area of the solid generated by revolving the area bounded by the curve $y=f(x)$, the x -axis $\& x=a, x=b$
7. Write the formula to find the volume of revolution of the curve $y=f(x)$, between $x=a \& x=b$ about x-axis.
8. Find length of an arc of parabola $y^{2}=4 a x$ cutting off by the latus rectum

Questions carrying 5 marks

1. Find entire length of astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$
2. Prove that the volume of the solid generated by revolution of the loop of the curve $2 a y^{2}=x(x-a)^{2}$ about the x -axis is $\frac{\pi a^{3}}{24}$.
3. Find the length of the loop of the curve $3 a y^{2}=x(x-a)^{2}$
4. Find the length of the curve $4 y^{2}=x^{3}$ between $x=0$ and $x=1$.
5. Find the area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x-axis
6. Find the length of the curve $4 y^{2}=x^{3}$ between $x=0$ and $x=1$.
7. Find the area bounded between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
8. Find the surface area of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ revolving about x-axis
9. Find the surface area generated by revolving the curve $x=y^{3}$ about the y-axis from $y=0$ to $y=2$.
10. Find the surface area generated by revolving the curve $x=y^{3}$ about the y-axis from $y=0$ to $y=2$.
11. Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
12. Find the volume of the solid obtained by revolving the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about x -axis
13. Show that the volume generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x -axis is 48π
