

PG Department of Mathematics QUESTION BANK

Measure & Integration

1. (i) Define outer measure of a set prove that $m^*(A + x) = m^*(A)$ for every set *A* and every real number '*x*'.

(ii) Show that for all real number *x*.

- **2.** Prove that the outer measure of an interval is its length.
- **3.** (a) If E_1 and E_2 are disjoint measurable subsets of set of all real numbers *R* then prove that $m^*[A \cap (E_1 \cup E_2)] = m^*(A \cap E_1) + m^*(A \cap E_2)$.
 - (b) Define an algebra of sets prove that $\bigcap_{iz_1}^n E_i$ belongs to algebra of sets.
 - (c) Define Lebesgue measure
 - (d) If $\{E_i\}$ is disjoint sequence of measureable sets, then prove that Lebesue measure is countable additive.
- **4.** Let $\{E_i\}_{i\geq 1}^{\infty}$ be an infinite decreasing sequence of measurable subsets of set of all real numbers. Let $m(E_i) < \infty$ for at least one *i* belonging to set of all natural number IN. Then prove that $m(\bigcap_{i\geq 1}^{\infty} E_i) = \lim_{n \to \infty} m(E_n)$

5. Define

- (i) Measureable function.
- (ii) Characteristic function.
- **6.** Let *E* be a measurable set then show that characteristic function χ_A is measurable if and only if *A* is measurable.
- 7. If $f: E \to \mathbb{R}^*$ is a measureable function and *C* is any real number then show that $C \pm f$ and Cf are measureable and hence prove that -f is measureable where \mathbb{R}^* is set of all positive real numbers.
- **8.** State and prove Egoroff's theroem.
- **9.** Let $\{E_i\}_{i_2}^n$, be a finite disjoint collection of measurable subsets of a set of finite measure E for $1 \le i \le n$, let a_i be a real number. If $\emptyset = \sum_{i=1}^n a_i \chi_{E_i}$ on E then show that $\int_E \emptyset = \sum_{i=1}^n a_i m(E_i)$
- **10.** If *f* is a non-negative measureable function on *E*, then show that for any

$$\lambda > 0, m\{x \in E | f(x) \ge \lambda\} \le \frac{1}{\lambda} \int_{E} f$$

11. The *f* and *g* are integrable over *E*, then prove that for any two real numbers \propto and β , the function $\propto f + \beta g$ is integrable over *E* and

$$\int_{E} \propto f + \beta g = \propto \int_{E} f + \beta \int_{E} g \text{ and if } f \leq g \text{ then } \int_{E} f \leq \int_{E} g$$

- **12.** (a) State and prove Fatou's Lema.
 - (b) Evaluate the Lebesgue integral of the function $f: [0,1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{1}{\sqrt[3]{x}} & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0 \end{cases}$$

(c) If f is integrable over E and $\{E_n\}_{n=1}^{\infty}$ is a disjoint countable collection of measurable subsets of E whose union is E then. Prove that

$$\int_{E} f = \sum_{n=1}^{\infty} \int_{E_n} f$$

- **13.** Establish Vitali covering Lemma
- **14.** Define a function of bounded variation on an interval [a, b]. Prove that a function f is of bounded Variation on [a, b] if and only if it is the difference of two increasing functions on [a, b].
- **15.** Defined an absolutely continuous function on an interval [*a*, *b*] show that a Lipschitz function on [*a*, *b*] is absolutely continuous.
- **16.** Let *E* be a measurable set. $1 \le p < \infty$ and *q* the conjugate of *p*. If $f \in L^p(E)$ and $g \in L^q(E)$ show that f_q is integrable over *E* and

$$\int_{E} |fg| \le ||f||_{p} ||g||_{q}$$

If $f \ne 0$ and $f^{*} = ||f||_{p}^{1-p}$ of $|f|^{p-1}$ then show that
$$\int_{E} ff^{*} = ||f||_{p} \text{ and } ||f^{*}||_{p} = 1 \text{ where } = \begin{cases} 1 \text{ if } f(x) \ge 1 \\ 0 \text{ or } x = 1 \end{cases}$$

$$\int_{E} ff^{*} = \|f\|_{p} \text{ and } \|f^{*}\|_{q} = 1 \text{ where } = \begin{cases} 1 \text{ if } f(x) \ge 0\\ -1 \text{ if } f(x) < 0 \end{cases}$$

- **17.** If *q* is the conjugate of *p* where $1 and <math>g \in L^q(E)$ show that the functional $Fg: L^p(E) \to \mathbb{R}$ defined by $Fg(f) = \int_E fg$ for all $f \in L^p(E)$ is bounded line as functional on $L^p(E)$ and $||Fg|| = ||g||_q$.
- **18.** Define outer measure of set *A*. Show that the outer measure of an interval is its length.
- **19.** If S_1 and S_2 are measurable sets, then prove that $S_1 \cup S_2$ is measurable.
- **20.** Show that every Borel set in \mathbb{R} is measurable.
- **21.** Prove that Lebesgue measure is countably additive.
- **22.** Let $\{E_i\}$ be an infinite decreasing sequence of measurable subsets of \mathbb{R} and $m(E_1)$ is finite then show that $m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$.
- **23.** Define measurable function. Let $f: E \to \mathbb{R}$ be a function where *E* is a measurable set then prove that *f* is measurable if and only if for any open set *G* in \mathbb{R} , $f^{-1}(G)$ is a measurable.
- **24.** If $\{f_n\}$ converges in measure to f then prove that the limit function f is unique almost everywhere.
- **25.** Let *E* be a measurable set with $m(E) < \infty$ and $\{f_n\}$ be a sequence of measurable functions defined on *E*. Let *f* be a measurable function such that $f_n \to f$ on *E*. Then show that given $\epsilon > 0$ and $\delta > 0$, there is a measurable set $A \subset E$ with $m(A) < \delta$ and an integer *N* such that $|f_n(x) f(x)| < \epsilon \forall x \in E A$ and $\forall n \ge N$.
- **26.** If *f* and *g* are bounded measurable functions defined on a set *E* of finite measure then show the following results are true:

i)
$$\int af = a \int f$$

ii) $\int_E f + g = \int_E f + \int_E g$

- **27.** State and prove Lebesgue Monotone convergence theorem.
 - Let $\{E_i\}$ be a sequence of disjoint measurable sets with $\bigcup_{i=1}^{\infty} E_i = E$ and f is non negative measurable function then prove that $\int_E f = \sum_{i=1}^{\infty} \int_{E_i} f \, dx$
- **28.** Let *f* be a non negative integrable function over a measurable set *E* then prove that given $\epsilon > 0 \exists \delta > 0$ such that for every set $A \subseteq E$ with $m(A) < \delta$ we have $\int_A f < \epsilon$.
- **29.** State and prove Generalized Lebesgue convergence theorem.
- **30.** Let *f* be a function of bounded variation on [a, b] then show that $T_a^b = P_a^b + N_a^b$ and $f(b) f(a) = P_a^b N_a^b$ where T_a^b, P_a^b and N_a^b have their usual meaning.
- **31.** Let *f* be bounded, measurable function on [*a*, *b*] and $F(x) = \int_{a}^{x} f(t) dt + F(a)$ then prove that F'(x) = f(x) almost everywhere $\forall x \in [a, b]$.
- **32.** Define outer measure of a set. Prove that outer measure is,

- i. Translation invariant.
- ii. Countable sub-additive
- **33.** Define measurable sets. Prove that if E_1 , E_2 are measurable sets then $E_1 \cup E_2$ is also measurable.
- **34.** Show that the interval (a, ∞) is measurable.
- **35.** Let $\{E_i\}_{i=1}^{\infty}$ be an infinite decreasing sequence of measurable subsets of \mathbb{R} , where

 E_i is of finite measure for atleast one *i* in \mathbb{N} . Prove that $m(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} m(E_n)$.

- **36.** Prove the following properties of measurable functions.
 - (i) If *f* is a measurable function on a measurable set *E* and $E_1 \subset E$ then *f* is measurable on E_1 .
 - (ii) If *f* is a measurable function on each of the sets in a countable collection $\{E_i\}$ of disjoint measurable sets then *f* is measurable on $\bigcup_{i=1}^{\infty} E_i$.

(iii) If f and g are measurable functions on a common domain then the set $A(f,g) = \{x \in A; f(x) < g(x)\}$ is measurable

37. Prove that a continuous function defined on measurable set is measurable.

- **38.** Let *f*, *g* be functions from *E* to \mathbb{R}^* the set of extended real numbers, be measurable functions then show that $f \pm g: E \to \mathbb{R}^*$ are also measurable
- **39.** Prove that every step function is measurable.
- **40.** Let *f* and *g* be two bounded measurable functions defined on a set of finite measure *E*. The prove $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta g$

 $\beta \int_E g$, where $\alpha \& \beta$ are real numbers. Also show that if $f \le g$ on E, then $\int_E f \le c$

$$J_E g$$
.

41. State and prove Lebesgue dominated convergence theorem.

42. Prove that a function *F* is an indefinite integral if and only if it is absolutely continuous.