K.L.E Society's
S. Nijalingappa College

II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Measure \& Integration

1. (i) Define outer measure of a set prove that $m^{*}(A+x)=m^{*}(A)$ for every set A and every real number ' x '.
(ii) Show that for all real number x.
2. Prove that the outer measure of an interval is its length.
3. (a) If E_{1} and E_{2} are disjoint measurable subsets of set of all real numbers R then prove that $m^{*}\left[A \cap\left(E_{1} \cup E_{2}\right)\right]=m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{2}\right)$.
(b) Define an algebra of sets prove that $\bigcap_{i z 1}^{n} E_{i}$ belongs to algebra of sets.
(c) Define Lebesgue measure
(d) If $\left\{E_{i}\right\}$ is disjoint sequence of measureable sets, then prove that Lebesue measure is countable additive.
4. Let $\left\{E_{i}\right\}_{i z 1}^{\infty}$ be an infinite decreasing sequence of measurable subsets of set of all real numbers. Let $m\left(E_{i}\right)<\infty$ for at least one i belonging to set of all natural number IN. Then prove that $m\left(\bigcap_{i z 1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$
5. Define
(i) Measureable function.
(ii) Characteristic function.
6. Let E be a measurable set then show that characteristic function χ_{A} is measureable if and only if A is measurable.
7. If $f: E \rightarrow \mathbb{R}^{*}$ is a measureable function and C is any real number then show that $C \pm f$ and $C f$ are measureable and hence prove that $-f$ is measureable where \mathbb{R}^{*} is set of all positive real numbers.
8. State and prove Egoroff's theroem.
9. Let $\left\{E_{i}\right\}_{i_{2}}^{n}$, be a finite disjoint collection of measurable subsets of a set of finite measure E for $1 \leq$ $i \leq n$, let a_{i} be a real number. If $\emptyset=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ on E then show that $\int_{E} \emptyset=\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)$
10. If f is a non-negative measureable function on E, then show that for any

$$
\lambda>0, m\{x \in E \mid f(x) \geq \lambda\} \leq \frac{1}{\lambda} \int_{E} f
$$

11. The f and g are integrable over E, then prove that for any two real numbers \propto and β, the function $\propto f+\beta g$ is integrable over E and

$$
\int_{E} \propto f+\beta g=\propto \int_{E} f+\beta \int_{E} g \text { and if } f \leq g \text { then } \int_{E} f \leq \int_{E} g
$$

12. (a) State and prove Fatou's Lema.
(b) Evaluate the Lebesgue integral of the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{\sqrt[3]{x}} & \text { if } 0<x \leq 1 \\
0 & \text { if } x=0
\end{array}\right.
$$

(c) If f is integrable over E and $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a disjoint countable collection of measurable subsets of E whose union is E then. Prove that

$$
\int_{E} f=\sum_{n=1}^{\infty} \int_{E_{n}} f
$$

13. Establish Vitali covering Lemma
14. Define a function of bounded variation on an interval $[a, b]$. Prove that a function f is of bounded Variation on $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$.
15. Defined an absolutely continuous function on an interval $[a, b]$ show that a Lipschitz function on $[a, b]$ is absolutely continuous.
16. Let E be a measurable set. $1 \leq p<\infty$ and q the conjugate of p. If $f \in L^{p}(E)$ and $g \in L^{q}(E)$ show that f_{g} is integrable over E and

$$
\begin{aligned}
& \int_{E}|f g| \leq\|f\|_{p}\|g\|_{q} \\
& \text { If } f \neq 0 \text { and } f^{*}=\|f\|_{p}^{1-p} \text { of }|f|^{p-1} \text { then show that } \\
& \int_{E} f f^{*}=\|f\|_{p} \text { and }\left\|f^{*}\right\|_{q}=1 \text { where }=\left\{\begin{array}{c}
1 \text { if } f(x) \geq 0 \\
-1 \text { if } f(x)<0
\end{array}\right.
\end{aligned}
$$

17. If q is the conjugate of p where $1<p<\infty$ and $g \in L^{q}(E)$ show that the functional $F g: L^{p}(E) \rightarrow \mathbb{R}$ defined by $F g(f)=\int_{E} f g$ for all $f \in L^{p}(E)$ is bounded line as functional on $L^{p}(E)$ and $\|F g\|=\|g\|_{q}$.
18. Define outer measure of set A. Show that the outer measure of an interval is its length.
19. If S_{1} and S_{2} are measurable sets, then prove that $S_{1} \cup S_{2}$ is measurable.
20. Show that every Borel set in \mathbb{R} is measurable.
21. Prove that Lebesgue measure is countably additive.
22. Let $\left\{E_{i}\right\}$ be an infinite decreasing sequence of measurable subsets of \mathbb{R} and $m\left(E_{1}\right)$ is finite then show that $m\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.
23. Define measurable function. Let $f: E \rightarrow \mathbb{R}$ be a function where E is a measurable set then prove that f is measurable if and only if for any open set G in $\mathbb{R}, f^{-1}(G)$ is a measurable.
24. If $\left\{f_{n}\right\}$ converges in measure to f then prove that the limit function f is unique almost everywhere.
25. Let E be a measurable set with $m(E)<\infty$ and $\left\{f_{n}\right\}$ be a sequence of measurable functions defined on E. Let f be a measurable function such that $f_{n} \rightarrow f$ on E. Then show that given $\epsilon>0$ and $\delta>0$, there is a measurable set $A \subset E$ with $m(A)<\delta$ and an integer N such that $\left|f_{n}(x)-f(x)\right|<\epsilon \forall x \in E-A$ and $\forall n \geq N$.
26. If f and g are bounded measurable functions defined on a set E of finite measure then show the following results are true:
i) $\int a f=a \int f$
ii) $\int_{E} f+g=\int_{E} f+\int_{E} g$
27. State and prove Lebesgue Monotone convergence theorem.

Let $\left\{E_{i}\right\}$ be a sequence of disjoint measurable sets with $\bigcup_{i=1}^{\infty} E_{i}=E$ and f is non negative measurable function then prove that $\int_{E} f=\sum_{i=1}^{\infty} \int_{E_{i}} f d x$
28. Let f be a non negative integrable function over a measurable set E then prove that given $\epsilon>0 \exists \delta>0$ such that for every set $A \subseteq E$ with $m(A)<\delta$ we have $\int_{A} f<$ ϵ.
29. State and prove Generalized Lebesgue convergence theorem.
30. Let f be a function of bounded variation on $[a, b]$ then show that $T_{a}^{b}=P_{a}^{b}+$ N_{a}^{b} and $f(b)-f(a)=P_{a}^{b}-N_{a}^{b}$ where T_{a}^{b}, P_{a}^{b} and N_{a}^{b} have their usual meaning.
31. Let f be bounded, measurable function on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) d t+F(a)$ then prove that $F^{\prime}(x)=f(x)$ almost everywhere $\forall x \in[a, b]$.
32. Define outer measure of a set. Prove that outer measure is,
i. Translation invariant.
ii. Countable sub-additive
33. Define measurable sets. Prove that if E_{1}, E_{2} are measurable sets then $E_{1} \cup E_{2}$ is also measurable.
34. Show that the interval (a, ∞) is measurable.
35. Let $\left\{E_{i}\right\}_{i=1}^{\infty}$ be an infinite decreasing sequence of measurable subsets of \mathbb{R}, where
E_{i} is of finite measure for atleast one i in \mathbb{N}. Prove that $m\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.
36. Prove the following properties of measurable functions.
(i) If f is a measurable function on a measurable set E and $E_{1} \subset E$ then f is measurable on E_{1}.
(ii) If f is a measurable function on each of the sets in a countable collection $\left\{E_{i}\right\}$ of disjoint measurable sets then f is measurable on $\bigcup_{\mathrm{i}=1}^{\infty} \mathrm{E}_{\mathrm{i}}$.
(iii) If f and g are measurable functions on a common domain then the set $A(f, g)=\{x \in A ; f(x)<g(x)\}$ is measurable
37. Prove that a continuous function defined on measurable set is measurable.
38. Let f, g be functions from E to \mathbb{R}^{*} the set of extended real numbers, be measurable functions then show that $f \pm g: E \rightarrow \mathbb{R}^{*}$ are also measurable
39. Prove that every step function is measurable.
40. Let f and g be two bounded measurable functions defined on a set of finite measure E. The prove

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+
$$

$\beta \int_{E} g$, where $\alpha \& \beta$ are real numbers. Also show that if $f \leq g$ on E, then $\int_{E} f \leq$ $\int_{E} g$.
41. State and prove Lebesgue dominated convergence theorem.
42. Prove that a function F is an indefinite integral if and only if it is absolutely continuous.

