BENGALURU CITY UNIVERSITY

V Semester B.Sc Degree Examination

Mathematics (Core) - MATDSCT 5.2

Vector Calculus and Analytical Geometry

Model Paper - 1

Time: 2 Hours and 30 Minutes

Max. Marks: 60

Answer any six questions

 $6 \times 2 = 12$

- 1. If $\vec{r} = t \hat{i} t^2 \hat{j} + \sin t \hat{k}$, find $\frac{d\vec{r}}{dt}$, $\frac{d\vec{r}}{dt}$ at t = 0
- 2. Define curvature and torsion of a space curve
- 3. Find the unit normal vector to the surface $x^2 y^2 + z = 2$ at (1.1.1)
- 4. Show that the vector $\vec{F} = (6xy + z^2)\vec{i} + (3x^2 z)\vec{j} + (3xz^2 y)\vec{k}$ is irrotational.
- 5. Evaluate $\int_C 5xy \, dx + y^2 dy$ where c is the curve $y = 2x^2$ from (0,0)to (1,2).
- 6. State the Stokes theorem.
- 7. Find the distance of the point (2, 3, 4) from the plane 3x-6y+2z+11=0.
- 8. Find the equation of the sphere whose center at (2,-3,4) and radius is 5 units.

II Answer any three questions

 $3 \times 4 = 12$

- 9. If $\vec{u} = t\hat{i} + 2t^2\hat{k}$, $\vec{v} = t^3\hat{j} + t\hat{k}$, $\vec{w} = \hat{i} + t\hat{j} + t^2\hat{k}$ Find $\frac{d}{dt}(\vec{u} \times (\vec{v} \times \vec{w}))$
- 10. State and prove Serenet-Frenet formula.
- 11. For the space curve $x = ae^{-x}$, $y = ae^{-x}$, $z = \sqrt{2}$ au ST $x = -\tau$
- 12. Show that the cylindrical coordinate system is orthogonal curvilinear coordinate system.
- 13. Express the vector $\vec{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in terms of spherical polar coordinates.

III Answer any three questions

 $3 \times 4 = 12$

- 14. Prove that the surfaces $4x^2y + z^3 = 4$ and $5x^2 2yz = 9x$ intersect orthogonally at the point (1,-1,2).
- 15. If $\hat{f} = 2x\hat{i} + 3y\hat{j} + 4z\hat{k}$ and $\phi = xy^2z^3$ find \vec{f} . $\nabla \phi$ and $\nabla |\vec{f}|^2$.
- 16. Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ where $r^2 = x^2 + y^2 + z^2$

17. Find the constants a,b,c so that the vector $\vec{F} = (x+2y+\alpha z)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$ is irrotational.

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001

18. If ϕ and \vec{F} are scalar point, vector point functions respectively then, prove that $curl(\phi\vec{F}) = \phi curl\vec{F} + (grad\phi) \times \vec{F}$

IV Answer any three questions

 $3 \times 4 = 12$

- 19. Evaluate $\iint_{\mathbb{R}} xy(x+y)dxdy$, where R is the region bounded between the parabola $y=x^2$ and the line y=x.
- 20. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by using double Integration.
- 21. Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^{\sqrt{a^2-x^2-y^2}} xyz \, dx dy dz$.
- 22. Find the volume of the Tetrahedron bounded by the plane x=0, y=0, z=0 and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
- 23. Evaluate using Gauss divergence theorem $\vec{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k}$ taken over the rectangular parelopiped x = 0, y = 0, z = 0 and x = a, y = b, z = c.

V Answer any three questions

 $3 \times 4 = 12$

- 24. Find the distance between the parallel planes 2x-y+3z+4=0 and 6x-3y+9z-3=0.
- 25. Find the image of the point (-3,0,1) in the plane 4x-3y+2z=19.
- 26. Find the distance between the lines $\frac{x-2}{3} = \frac{y+1}{0} = \frac{z-3}{-1}$ and $\frac{x+1}{3} = \frac{y-2}{0} = \frac{z+4}{-1}$.
- 27. Find the equation of the sphere which passes through the points (1,0,0), (0,1,0), (0,0,1) and whose center lies on the plane 3x-y+z=2.
- 28. Find the equation of the tangent planes to the sphere $x^2+y^2+z^2-4x+2y-6z+5=0$ which are parallel to the plane 2x+2y-z=0.

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001

BENGALURU CITY UNIVERSITY

V Semester B.Sc Degree Examination

Mathematics (Core) - MATDSCT 5.2

Vector Calculus and Analytical Geometry

Model Paper - 2

Time: 2 Hours and 30 Minutes

Max. Marks: 60

I Answer any six questions

 $6 \times 2 = 12$

- 1. If $\vec{r} = 2\cos t \,\hat{i} 3\sin t \,\hat{j} + 5\,\hat{k}$ find $\left| \frac{d^2\vec{r}}{dt^2} \right|$ at $t = \frac{\pi}{2}$
- 2. Find the unit tangent vector at t = 1 to the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$
- 3. If $\phi = x^2 y^2 + 4z$ show that $\nabla^2 \phi = 0$
- 4. Show that the vector $\vec{F} = (x+3y)\hat{i} + (y-3z)\hat{j} + (x-2z)\hat{k}$ is solenoidal.
- 5. Evaluate $\int_{(0,1)}^{(2,5)} (3x+y)dx + (2y-x)dy$ along the curve $y = x^2 + 1$
- 6. State the Divergence theorem.
- 7. Find the angle between the planes 3x-6y+2z+5=0 and 4x-12y+3z-3=0.
- 8. Find the equation of the sphere which passes through (-1,2,3) and has its center at (3,-1,1).

II Answer any three questions

 $3 \times 4 = 12$

- 9. If $\vec{r} = a \cos t \hat{i} + a \sin t \hat{j} + a t \tan \alpha \hat{k}$ find $\left[\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3} \right]$
- 10. Derive an expression for curvature and torsion in terms of the derivative of \vec{r} with arc length s.
- 11. For the curve $x = a\cos t$, $y = a\sin t$, z = bt ST $\kappa = \frac{a}{a^2 + b^2}$, $\tau = \frac{b}{a^2 + b^2}$
- 12. ST the spherical coordinate system is an orthogonal curvilinear coordinate system
- 13. Express the vector $\vec{f} = 2y\hat{i} z\hat{j} + 3x\hat{k}$ in cylindrical polar coordinates

III Answer any three questions

 $3 \times 4 = 12$

- 14. Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the normal to the surface $x \log z y^2 = -4$ at the point (-1,2,1).
- 15. Show that $\operatorname{div}\left\{r\nabla\left(\frac{1}{r^3}\right)\right\} = \frac{3}{r^4}$.

Charles of the Computation of th

- 16. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$ show that $\nabla^2(r^{n+1}) = (n+1)(n+2)r^{n+1}$.
- 17. Show that $\vec{F} = (6xy + z^3)\hat{\imath} + (3x^2 z)\hat{\jmath} + (3xz^2 y)\hat{k}$ is irrotational. Find ϕ such that $\vec{F} = \nabla \phi$.
- 18. Prove that $\operatorname{div}(\operatorname{curl}(\vec{F})) = 0$ and $\operatorname{curl}(\operatorname{grad}(\emptyset)) = 0$.

IV Answer any three questions

 $3 \times 4 = 12$

- 19. Evaluate $\iint_R xy \, dxdy$ where R is the region bounded by the X-axis, the ordinates x=2a and the parabola $x^2 = 4ay$, a > 0.
- 20. Evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dx dy$ by changing the order of integration.
- 21. Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^{\sqrt{a^2-x^2-y^2}} \frac{dxdydz}{\sqrt{a^2-x^2-y^2-z^2}}$
- 22. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals.
- 23. Evaluate using Green's theorem $\oint_C (x^2 xy^3) dx + (y^2 2xy) dy$ where C is the square with vertices (0,0), (2,0), (2,2) and (0,2).

V Answer any three questions

 $3 \times 4 = 12$

- 24. Find the length and foot of the perpendicular from the point (1,1,2) to the plane 2x-2y+4z+5=0.
- 25. Find the equation of the planes bisecting the angle between the planes x+2y+2z=19 and 4x-3y+12z+3=0 and specify the one which bisects the acute angle.
- 26. Find the equations of the line passing through the point (-1,3,-2) and perpendicular to each of the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$.
- 27. Show that the planes 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0$ and find the point of contact
- 28. Find the equation of the sphere that passes through the two points (0,3,0), (-2,-1,-4) and cuts orthogonally the two spheres $x^2+y^2+z^2+x-3z-2=0$ and $2(x^2+y^2+z^2)+x+3y+4=0$.

Rah

Chairman
Department of Mathemich.
Bengaluru City University
Central College Campus
Bengaluru - 441 (0)

BENGALURU CITY UNIVERSITY

V Semester B.Sc Degree Examination

Mathematics (Core) - MATDSCT 5.2 **Vector Calculus and Analytical Geometry**

Model Paper - 3

Time: 2 Hours and 30 Minutes

Max. Marks: 60

 $6 \times 2 = 12$

Answer any six questions ł

If $\vec{r} = \vec{a}\cos\omega t + \vec{b}\sin\omega t$ $ST \frac{d^2\vec{r}}{dt^2} = -\omega^2\vec{r}$ 1.

For the space curve $\vec{r} = 3\cos t \hat{i} + 3\sin t \hat{j} + 4t \hat{k}$ find unit tangent vector at $t = \pi$ 2.

If $r = |\vec{r}|$ where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, prove that $\nabla r^n = nr^{n-2}\vec{r}$. 3.

Find div \vec{F} for $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$

Evaluate $\int_c (x+y)dx + (y-x)dy$ along the line joining the points (1,1)and (4,2). 4. 5.

State Green's theorem in the plane.

Show that the planes x+2y-3z+4=0 and 4x+7y+6z+2=0 are perpendicular. 6.

Find the centre and radius of the sphere $4x^2+4y^2+4z^2-16x-24y+43=0$. 7. 8.

Answer any three questions H

 $3 \times 4 = 12$

If $\vec{a} = 5t^2\hat{\imath} + t\hat{\jmath} - t^3\hat{k}$, $\vec{b} = sint\hat{\imath} - cost\hat{\jmath}$, $Find \frac{d}{dt}(\vec{a}, \vec{b})$ and $\frac{d}{dt}(\vec{a} \times \vec{b})$.

Derive an expression for curvature & torsion in terms of derivatives of \vec{r} w.r.t. the 9. parameter u where $\bar{r} = \bar{r}(u)$ is the equation of the curve. 10.

For the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$ find κ , ρ , \hat{n} , \hat{b} .

Express the vector $\vec{f} = 3y\hat{i} + x^2\hat{j} - z^2\hat{k}$ in cylindrical polar coordinates. 11.

Express the vector $\vec{f} = x\hat{i} + y\hat{j} + z\hat{k}$ in spherical polar coordinates. 12. 13.

Answer any three questions 111

 $3 \times 4 = 12$

Find the equations of the tangent plane and the normal line to the surface $x^3+y^3+3xyz=$ 14. 3 at the point (1,2,-1).

If n is a non-zero constant, show that $\nabla^2 r^n = n(n+1)r^{n-2}$. Deduce that when $r \neq 0, r^n$ 15.

harmonic if and only if n=-1. is

Find curl curl \vec{F} if $\vec{F} = x^2y\hat{\imath} - 2xz\hat{\jmath} + 2yz\hat{k}$, 16.

If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then show that $r''\vec{r}$ is irrotational vector for any value of n but is 17. Ranto solenoidal only when n=-3.

Conval of tego Cam

18. Prove that $\operatorname{div}(\vec{f} \times \vec{g}) = \vec{g} \cdot \operatorname{curl} \vec{f} - \vec{f} \cdot \operatorname{curl} \vec{g}$

$3 \times 4 = 12$

IV Answer any three questions

- 19. If R is the region bounded by the line x = 1, y = 0 and the parabola $y = x^2$, evaluate $\iint_{\mathbb{R}} (x^2 + y^2) dx dy.$
- 20. Evaluate $\iint_D \frac{x^2y^2}{x^2+y^2} dxdy$ where D is the annular region between the circles $x^2+y^2=4$ And $x^2+y^2=1$ by changing to polar coordinates.
- 21. Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} \frac{dxdydz}{(1+x+y+z)^3}$
- 22. Evaluate $\iiint_R xyzdxdydz$ where R is the region in the first octant of the sphere $x^2 + y^2 + z^2 = a^2$ by changing to spherical polar coordinates.
- 23. Evaluate by using Stoke's theorem $\oint_C (x+y)dx + (2x-z)dy + (y+z)dz$ where C is the boundary of the traingle with vertices (2,0,0),(0,3,0) and (0.0.6).

V Answer any three questions

- $3 \times 4 = 12$
- 24. Find the distance of the point (3, 2,1) from the plane containing the points(1,1,0). (3,-1,1) and (-1,0,2).
- 25. Find k such that the lines $\frac{x-1}{2} = \frac{y-2}{2k} = \frac{z+1}{-1}$ and $\frac{x+1}{k} = \frac{y+1}{4} = \frac{z-2}{1}$ are (i) parallel and (ii) perpendicular.
- 26. Find the length of the perpendicular from (6,-4,4) to the line joining the points (2,1,2) and (3,-1,4). Also find its equation.
- 27. Find the equation of the sphere which passes through the points (1,2,3), (0,-2,4), (4,-4,2) And (3,1,4).
- 28. Define Orthogonal spheres and derive the condition for two spheres $x^2+y^2+z^2+2u_1x+2v_1y+2w_1z+d_1=0 \text{ and } x^2+y^2+z^2+2u_2x+2v_2y+2w_2z+d_2=0 \text{ to be orthogonal}.$

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001