

K.L.E Society's S. Nijalingappa College II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Numerical Analysis-I

- **1.** Define relative error and round off error. Find a real root of the equation by fixed point iterative method $f(x) = x^6 x 1 = 0$ with an accuracy of 10^{-4} .
- **2.** Describe Aitken's process to accelerate the convergence for finding the root of f(x) = 0 and hence find the root for $x^3 + x^2 1$.
- **3.** Using Newton-Raphson method find the root of the equation $x^2 a = 0$ for some real number a and find the rootfor $\sqrt{12}$.
- **4.** Obtain the smallest root of the equation $x^3 9x^2 + 26x 24 = 0$.
- **5.** Find the number of real roots of $x^3 5x + 1 = 0$ using Sturm sequences.
- **6.** Compute, to four decimal places, the root between 0 and 1 of the equation $x^3 x 1$ by Muller's method
- 7. Use Gauss elimination to solve the system 2x + y + z = 10, 3x + 2y + 9z = 16, x + 4y + 9z = 16.
- **8.** Solve the system of equations using Crout's method.

2u + 3v - w = 4, u - 2v + w = 6, u - 12v + 5w = 1

- **9.** For the system of equations AX = b using Jacobi iterative method, show that $X^{k+1} = -D^{-1}(L+U)X^k + D^{-1}b$.
- **10.** Solve the system by Newton Raphson method by taking $x_0 = 0.5 = y_0$,

 $f(x, y) = 3yx^2 - 10x + 7 = 0$, $g(x, y) = y^2 - 5y + 4 = 0$ (Perform 2 iterations

- **11.** Establish Lagrange interpolating polynomial of degree n in its standard form.
- **12.** Using natural cubic spline interpolation for the function defined by the data given by the following, estimate the value of f(2.5).

- **13.** Obtain a linear polynomial approximation to the function on the [0,1] using the least square approximation method.
- **14.** Evaluate the integral using Gauss-Laguerre method $\int_0^\infty \frac{e^{-x}}{1+x^2} dx$.
- **15.** Establish Gauss-Hermite one and two point formulae. Determine the error term for each.

16. Solve by Simpson's rule
$$\int_{1}^{1.5} \int_{1}^{2} \frac{dxdy}{x+y}$$
 with $h = 0.5, k = 0.25$.

- **17.** Describe Newton-Raphson method for finding a root of equation f(x) = 0. Show that the condition for convergence is $|\varphi'(x)| < 1$.
- **18.** Find the real root of the equation $x = 2 e^{-x}$ with $x_0 = 0.8$ using Aitken's process with an accuracy of 10^{-3} .
- **19.** Extract the quadratic factor of the form $x^2 + px + q$ from the polynomial p(x) and hence find the quadratic factor for $(x) = x^3 x 1$.
- **20.** Obtain the number of real roots of $x^4 3x^2 + x 2 = 0$ using Sturm sequence.
- **21.** Establish Muller's method for a nonlinear equation f(x) = 0
- **22.** Use Gauss-elimination to solve the system

4x + y + z = 8, 2x + 5y + 2z = 3, x + 2y + 4z = 11.

23. Solve the system of equations using Cholesky method.

4x + 2y + 14z = 14, 2x + 17y - 5z = -101, 14x - 5y + 83z = 155.

24. Give the generalization of Gauss–Seidel method for the system of equationsAX = b.

25. Solve the system by Newton Raphson method by taking $x_0 = 1$, $y_0 = 0$,

 $x^{2} + y^{2} = 1.12$, xy = 0.23 (Perform 2 iterations)

x	-1	0	1
f(x)	1	1	3
f'(x)	-5	1	7

- 26. Establish Quadratic spline interpolation for the equally spaced roots.
- **27.** Find the Hermite interpolating polynomial for the data points
- **28.** Obtain a rational approximation $R_{3,3}(x)$ for e^x .
- 29. Evaluate the integral using Gauss-Legendre one point, two point, three pointformulae

$$for \int_0^1 \frac{1}{1+x} \, dx.$$

30. Establish Gauss-Chebyshev one and two point formulae. Determine the error term for each.

31. Solve by Simpson's rule
$$\int_{1}^{1.5} \int_{1}^{2} \frac{2xy}{(1+x^2)(1+y^2)} dx dy$$
 with $h = k = 0.5$.