K.L.E Society's
S. Nijalingappa College

II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Numerical Analysis-I

1. Define relative error and round off error. Find a real root of the equation by fixed point iterative method $f(x)=x^{6}-x-1=0$ with an accuracy of 10^{-4}.
2. Describe Aitken's process to accelerate the convergence for finding the root of $f(x)=0$ and hence find the root for $x^{3}+x^{2}-1$.
3. Using Newton-Raphson method find the root of the equation $x^{2}-a=0$ for some real number a and find the rootfor $\sqrt{12}$.
4. Obtain the smallest root of the equation $x^{3}-9 x^{2}+26 x-24=0$.
5. Find the number of real roots of $x^{3}-5 x+1=0$ using Sturm sequences.
6. Compute, to four decimal places, the root between 0 and 1 of the equation $x^{3}-x-1$ by Muller's method
7. Use Gauss elimination to solve the system

$$
2 x+y+z=10,3 x+2 y+9 z=16, x+4 y+9 z=16 .
$$

8. Solve the system of equations using Crout's method.

$$
2 u+3 v-w=4, u-2 v+w=6, u-12 v+5 w=1
$$

9. For the system of equations $A X=b u s i n g$ Jacobi iterative method, show that

$$
X^{k+1}=-D^{-1}(L+U) X^{k}+D^{-1} b
$$

10. Solve the system by Newton Raphson method by taking $x_{0}=0.5=y_{0}$, $f(x, y)=3 y x^{2}-10 x+7=0, g(x, y)=y^{2}-5 y+4=0$ (Perform 2 iterations
11. Establish Lagrange interpolating polynomial of degree n in its standard form.
12. Using natural cubic spline interpolation for the function defined by the data given by the following, estimate the value of $f(2.5)$.
13. Obtain a linear polynomial approximation to the function on the $[0,1]$ using the least square approximation method.
14. Evaluate the integral using Gauss-Laguerre method $\int_{0}^{\infty} \frac{e^{-x}}{1+x^{2}} d x$.
15. Establish Gauss-Hermite one and two point formulae. Determine the error term for each.
16. Solve by Simpson's rule $\int_{1}^{1.5} \int_{1}^{2} \frac{d x d y}{x+y}$ with $h=0.5, k=0.25$.
17. Describe Newton-Raphson method for finding a root of equation $f(x)=0$. Show that the condition for convergence is $\left|\varphi^{\prime}(x)\right|<1$.
18. Find the real root of the equation $x=2 e^{-x}$ with $x_{0}=0.8$ using Aitken's process with an accuracy of 10^{-3}.
19. Extract the quadratic factor of the form $x^{2}+p x+q$ from the polynomial $\mathrm{p}(\mathrm{x})$ and hence find the quadratic factor for $(x)=x^{3}-x-1$.
20. Obtain the number of real roots of $x^{4}-3 x^{2}+x-2=0$ using Sturm sequence.
21. Establish Muller's method for a nonlinear equation $f(x)=0$
22. Use Gauss-elimination to solve the system

$$
4 x+y+z=8,2 x+5 y+2 z=3, x+2 y+4 z=11
$$

23. Solve the system of equations using Cholesky method.

$$
4 x+2 y+14 z=14,2 x+17 y-5 z=-101,14 x-5 y+83 z=155
$$

24. Give the generalization of Gauss-Seidel method for the system of equations $A X=b$.
25. Solve the system by Newton Raphson method by taking $x_{0}=1, y_{0}=0$, $x^{2}+y^{2}=1.12, x y=0.23$ (Perform 2 iterations)

x	-1	0	1
$f(x)$	1	1	3
$f^{\prime}(x)$	-5	1	7

26. Establish Quadratic spline interpolation for the equally spaced roots.
27. Find the Hermite interpolating polynomial for the data points
28. Obtain a rational approximation $R_{3,3}(x)$ for e^{x}.
29. Evaluate the integral using Gauss-Legendre one point, two point, three pointformulae

$$
\text { for } \int_{0}^{1} \frac{1}{1+x} d x
$$

30. Establish Gauss-Chebyshev one and two point formulae. Determine the error term for each.
31. Solve by Simpson's rule $\int_{1}^{1.5} \int_{1}^{2} \frac{2 x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)} d x d y$ with $h=k=0.5$.
