

PG Department of Mathematics QUESTION BANK

Real Analysis

1. Establish the definition and existence of Riemann - Stieltje's integral and hence prove the Darboux condition of integrability.

- **2.** Find the upper and lower Riemann Stieltje's sums of the function f(x) = 2x + 1 with respect to $\alpha(x) = x$ corresponding to the division of the interval [0, 1] into 5 subintervals of equal length.
- **3.** If *f* 'is a Riemann Stieltje's integrable function with respect to a function ' α ' on [a, b] and *c* belongs to (a, b) then prove that *f* is a Riemann Stieltje's integrable function on [a, c] and [c, b].
- **4.** If f_1 , f_2 belong to $\Re(\alpha)$ on [a, b] then prove that $f_1 + f_2$ belongs to $\Re(\alpha)$ and also show that $\int_a^b f_1 + f_2 \, d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$ where the terms carry their usual meaning.
- **5.** If *f* belongs to $\Re(\alpha)$ for the partition *P* and s_i, t_i be arbitrary points in $[x_{i-1}, x_i]$ then prove that,
- i) $\sum_{i=1}^{n} |f(s_i) f(t_i) \Delta \alpha_i| < \varepsilon$
- *ii*) $\left|\sum_{i=1}^{n} f(t_i) \Delta \alpha_i \int_a^b f d\alpha\right| < \varepsilon$
- **6.** Define a mesh of an interval and $S(P, f, \alpha)$. Further prove that the existence of the limit of $S(P, f, \alpha)$, as the mesh tends to 0, is a sufficient condition for f to belong to $\Re(\alpha)$. Also show that the $\lim_{\mu(P)\to 0} S(P, f, \alpha) = \int_a^b f d\alpha$.
- **7.** Define uniform convergence of a sequence of real valued functions. Further check the uniform convergence of the following sequence.
- *i*) $\{f_n\} = \frac{x}{n}$, where x belongs to [0, 1].
- *ii*) $\{f_n\} = \left\{\frac{nx}{1+n^3x^2}\right\}$, where x belongs to [0, 1].
 - **8.** Let α be a monotonically increasing functions on [a, b]. Suppose f_n is Riemann Stieltje'sintegrable function with respect to α on [a, b] for each n and converges

to *f* uniformly on [a, b], then prove that *f* is Riemann – Stieltje'sintegrable function with respect to α on [a, b]. Further show that

$$\int_a^b f d \alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha.$$

- **9.** Show that an infinite series $\sum f_n(x)$ converges uniformly on *E* if and only if for all $\varepsilon > 0$ there exists *N* such that n > N implies $\left|\sum_{K=n+1}^{n+p} f_k(x)\right| < \varepsilon$ for all p = 1, 2, 3, ... and *x* in *E*.
- **10.** State and prove the Weierstrass *M* test to check the convergence of an infinite series of real valued function.
- **11.** Test the uniform convergence of the series $\sum_{n=0}^{\infty} (1-x)x^n$, where x belongs to [0, 1].
- **12.** Suppose *K* is subsest of *Y* which is subset of *X* then show that *K* is compact relative to *X* if and only if *K* is compact relative to *Y*.
- **13.** Prove that $\bigcap_{n=1}^{\infty} I_n$ is non-empty for n=1,2,3,... and when $I_{n+1} \subset I_n$, if $\{I_n\}$ is a sequence of:
- i. Intervals in \mathbb{R} .
- ii. *K* cells, where *K* is a positive integer.
- **14.** Define a differentiable function of several variables. If 'f' maps an open set *E* in \mathbb{R}^n into \mathbb{R}^m and *f* is differentiable at a point *x* in *E*, prove that the partial derivatives $D_j f_i(x)$ exists and $f'(x) e_j = \sum_{i=1}^m (D_j f_i)(x)u_i$, where $1 \le j \le n$ and $u'_i s$, $e'_i s$ are standard basis of \mathbb{R}^n and \mathbb{R}^m respectively.
- **15.** Define a contraction mapping. If $\phi: X \to X$ is a contraction on a complete metric space *X* then prove that ϕ has a unique fixed point.
- **16.** State and prove inverse function theorem.

17. Show that the condition $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$ for every $\varepsilon > 0$, is the necessary and sufficient condition for a function 'f' to be Riemann – Stieltje's integrable function with respect to α on [a, b].

18. Show that $f(x) = x^2$ belongs to $\Re(x^3)$ on [0, 1], where the terms carry their usual meaning.

19. If *f* 'is a Riemann – Stieltje's integrable function with respect to the function α_1 and α_2 on [a, b] then prove that *f* is Riemann – Stieltje's integrable function with respect to $\alpha_1 + \alpha_2 on[a, b]$.

- **20.** Prove that -f belongs to $\Re(\alpha)$ if f belongs to $\Re(\alpha)$ on [a, b], where the terms carry their usual meaning.
- **21.** If *f* belongs to $\Re([a, b])$ and α is a monotonically increasing function on [a, b] such that α' belongs to $\Re([a, b])$ then prove that *f* belongs to $\Re(\alpha)$ and further establish that $\int_a^b f \, d\alpha = \int_a^b f \alpha' d\alpha$, where the terms above carry their usual meaning.
- **22.** If *f* is a continuous function on [*a*, *b*] and ϕ is a continuous and strictly monotonic function on [α , β], where $a = \phi(\alpha)$ and $b = \phi(\beta)$. Then prove that

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(y)) d\phi(y)$$

- **23.** State and prove Cauchy's criterion for uniform convergence of a sequence of real valued functions.
- **24.** Let $\{f_n\}$ be a sequence of functions differentiable on [a, b] such that $\{f_n(x_o)\}$ converges for some point x_o in [a, b]. If $\{f'_n\}$ converges uniformly on [a, b] then prove that $\{f_n\}$ converges uniformly on [a, b] to a function f and also establish that $f'(x) = \lim_{n \to \infty} f'_n(x)$ where $a \le x \le b$.
- **25.** State and prove Wierstrass M test.
- 26. Use the Wierstrass M test to check the convergence of the following series
 - *i*) $\sum_{n=0}^{\infty} (1-x)x^n$, for all x in[0, 1];
 - *ii*) $\sum_{n=0}^{\infty} \frac{\cos nx}{n^2}$ where x belongs to \mathbb{R} and $\left|\frac{\cos nx}{n^2}\right| \le \frac{1}{n^2}$.
- **27.** Suppose *Y* is a subset of *X*. Show that *A* subset *E* of *Y* is open relative to *Y* if and only if $E = Y \cap G$ for some open subset *G* of *X*.
- **28.** Let *E* be a subset of \mathbb{R}^k then prove that the following statements are equivalent.
- i) *E* is closed and bounded.
- ii) *E* is compact.
- iii) Every infinite subset of *E* has a limit point in *E*.
- **29.** Define Hessain matrix. State and prove Rank theorem.

30. State and prove the Implicit function theorem.