

K.L.E Society's S. Nijalingappa College II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

Riemannian Geometry:

- 1. a) Define Smooth manifold. The subset $M \subset \mathbb{R}^2$ defined by $M = \{(\sin 2\pi s, \sin \pi s), S \in M\}$ is called figure-8 and M is not adifferential Manifold
 - b) Define Tangent space. $\Phi: M \rightarrow N$ be a c^{∞} map and f,g $\in C$ then show that
 - i. $\Phi^*(f+g) = \Phi^*f + \Phi^*g$
 - ii. $\Phi^*(fg) = \Phi^*f \cdot \Phi^*g$
 - iii. $\Phi^*(\gamma f) = \gamma \Phi^* f \quad \gamma \in \mathbb{R}$

OR

b) Define smooth maps. $\Phi: M \to M'$ and $\varphi: M' \to M''$ are C map then show that $(\varphi \circ \Phi)^* = \Phi^* \circ \varphi^*$

2. a) If $X = yz \frac{\partial}{\partial x}$, $Y = zx \frac{\partial}{\partial y}$, $Z = xy \frac{\partial}{\partial z}$ then verify the Jacobi Identity for Lie bracket of vector fileds.

b) Define Riemannian connection. Ad prove that R is a field of type (1,3)

- 3. Define Diffiomorphism. And show that [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 as a Jocobi identity
- 4. Explain Jacobi Map. Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ $\Phi(x,y) = (u^2 v + v^2, u 2v^3, -ev^u)$. Evaluate $\Phi_{*(0,1)} = \left(4\frac{\partial}{\partial u} \frac{\partial}{\partial v}\right)$
- 5. State and Prove Bainchi 2nd Identity
- 6. For the components Γ_{ij}^h of a remannian connection ∇ on ,anifold of (M,g)

i.
$$\partial_k g_{ij} = g_{hj}\Gamma_{ki}^h + g_{hi}\Gamma_{kj}^h$$

ii. $\Gamma_{ki}^h = \partial_j log \sqrt{g}$ where $g = |g_{ij}|$

7. State and prove Fundamental theorem of Remannian Geometry

OR

Define Cotangent Tensors. Let T, $S \in D_s^r$. then $\nabla_X(T+S) = \nabla_X T + \nabla_X S$, Let $T \in D_s^r(M)$, $S \in D_q^p(M)$, $f \in c^{\infty} \alpha \in \mathbb{R}$. Then

- i. $\nabla_X(T \otimes S) = (\nabla_X T) \otimes S + S \otimes (\nabla_X S)$
- ii. $\nabla_X(fT) = (Xf)T + f(\nabla_X T)$
- 8. State and Prove Bainchi First Identity

OR

Define tensors on Manifolds and explain the followings

- i. Component of tensors
- ii. Transformation formula for components of Tensors.