

K.L.E Society's S. Nijalingappa College II BLOCK RAJAJINAGAR, BENGALURU -10

PG Department of Mathematics QUESTION BANK

TOPOLOGY-I

- 1. State and prove Schroder- Bernstein Theorem.
- 2. (a) Define topological Space. In topological space (X, τ) show that
 - i. Arbitrary intersection of closed sets is closed.
 - ii. Finite Union of closed sets is closed.
 - (b) Define limit point of a topological space. If $X = \{a, b, c\}, \tau = \{\Phi, X, \{a\}, \{b, c\}\}$ i. If $A = \{c\}$ find d (A).
 - ii. Find d ({a, b}), d({b,c}), d({a, c}).
- 3. (a) Let (X, τ) be any topological space, then for any set $A, B \subseteq X$. show that
 - i. $d(\Phi)=\Phi$
 - ii. $A \subseteq B \Rightarrow d(A) \subseteq d(B)$
 - iii. $d(A\cup B) = d(A)\cup d(B)$
- (a) Define closure of a set. In a topological space (X, τ) for any A⊆X. show that A∪d(A) is closed.
 - (b) Define Interior of a set. For any $A \subseteq X$, show that $A_0 = (A_1)_1$
- 5. (b) Define the continuity of a function in topological space. $f :\to Y$ is continuous at x iff V is a neighbourhood of $f(x) \Rightarrow f^{-1}(V)$ is nbd of x.
 - (b) State and prove pasting lemma.
- 6. (a) Define Homeomorphism. A bijective function f:X → Y is a Homeomorphism, iff f(A) ⊆ f(A) for any set A⊆X.
- Define bases of a topological space with an example. And Prove that is subfamily β of τ is a base for τ iff U∈τ and x∈U implies there exists B∈ β such that x∈B⊆U.
 - 8. Define Cauchy's Sequence. Let X be a complete space and Y be a subspace of X the Y is complete iff it is closed
 - 9. State and prove cantor's intersection theorem.
 - 10. State and prove contraction mapping theorem.

- 11. State and prove Bair's category theorem.
- 12. Define limit point of a topological space. If $X = \{a, b, c\}, \tau = \{\Phi, X, \{a\}, \{b, c\}\}$ If $A = \{c\}$ find d (A).
- 13. Let $A \subseteq (X,d)$ then followings are equivalent

i) X-A is Open

ii) $d(A) \subseteq A$ Where d(A) is the set of all limit points of A (2+3)

- 14. Define topological Space. In topological space (X, τ) show that
- i. Arbitrary intersection of closed sets is closed.
- ii. Finite Union of closed sets is closed.