BENGALURU CITY UNIVERSITY

V SEMESTER B.Sc, MATHEMATICS, PAPER – 5 (CBCS 2020 onwards)

Model Paper 1

Max marks: 70 Time: 3 hrs $2 \times 5 = 10$

I. Answer any FIVE questions

- 1). In a ring (R,+,.) prove that a. 0 = 0 = 0. a
- 2). Define a subring with an example
- 3). Define Quotient ring.
- 4). What is a Geodesic on the plane.
- 5). Write the Euler's formula to find the extremum of a functional $\int_{x_1}^{x_2} f(x, y, y') dx$
- 6). Prove that $\nabla \Delta = \Delta \nabla$
- 7).Write Newton backward interpolation formula
- 8). Write the Trapezoidal rule for numerical Integration.

II. Answer any TWO questions

 $2 \times 5 = 10$

- 9). Prove that $(Z_{5,+5},\times_{5})$ is a commutative ring with respect to addition modulo 5 and multiplication modulo 5.
- 10). Prove that every finite Integral Domain is a field.
- 11). Prove that intersection of two Ideals is an Ideal. Is the union an Ideal. Give an example.

III. Answer any TWO questions

 $2 \times 5 = 10$

- 12). Find the extremal of the functional $I = \int_0^{\frac{\pi}{2}} (y^2 {y'}^2 2y \sin x) dx$, y(0) = 0, $y(\frac{\pi}{2}) = 0$.
- 13). Find the path in which a particle in the absence of friction moves from one point to another in shortest time
- 14). Show that the extremal of the functional $\int_0^1 {y'}^2 dx$ subject to the constraint $\int_0^1 y dx = 1$ having y(0) = 0, y(1) = 1 is a parabolic curve.

IV. Answer any THREE questions

 $3 \times 5 = 15$

- 15) Prove that $(i)E\nabla = \nabla E = \Delta \quad (ii)\left(\frac{\Delta^2}{E}\right)x^3 = 6xh$
- 16). The values of sinx are given below for different values of x. Find the value of sin320

450 40^{0} 350 300 0.7071 0.6428 0.5736 0.5 y=sinx

Department of Mathematics Bengaluru City University Central College Campus Bengaluru - 560 001

a /(2) usinį	g Lagrani	se merbe	nation to	111010
x	0	1	3	4
f(x)	5	6	50	105
	2000 0000		-1	No. of the last of

- 18). Find the equation of the cubic curve which passes through the points (4, -43), (7, 83), (9,327) (12, 1053) Find f (10) by using divided difference formula
- 19). Evaluate $\int_0^3 \frac{dx}{(1+x)^2}$ by using Simpson's $\frac{3^{th}}{8}$ rule

V. Answer any THREE questions

$$3 \times 5 = 15$$

- 20). If $f: R \to R'$ be a homomorphism from R onto R'. Then show that $\ker(f)$ is an ideal of R.
- 21). Show that the extremal of the functional $I = \int_{x_1}^{x_2} \left(\frac{y'}{y}\right)^2 dx$ is expressible in the form of $y = ae^{bx}$
- 22). Find the curve which makes the functional $\int_0^1 (y'^2 + x) dx$ an extremum. Given

$$y(0) = 0, y(1) = 1$$
 Under the constraint $\int_0^1 y dx = 1$

- 23). Obtain the function whose first difference is $6x^2 + 10x + 11$
- 24) Find $\int_0^1 \frac{x^2}{1+x^3} dx$ by using Simpson's $\frac{1}{3}^{rd}$ rule

VI. Answer any TWO questions

$$2 \times 5 = 10$$

- 25) Light travels in a medium from (0,0) to (2a,0) such that the velocity is given by v=y. If the time taken is an extremum, find the path.
- 26) A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines x=0 & x=1 and a curve through the points with the following coordinates

the lines $x=0$ &	x=1 and a cu	rve through the I	ooints with the i	Ollowing coord	1.000
	0	0.25	0.5	0.75	11
x		0.9896	0.9589	0.9089	0.8415
<u>y</u>	<u>.</u>	0.7070			

Estimate the volume of the solid formed using trapezoidal rule

27) A reservoir discharging water through sluices at a depth x below the water surface has a water surface area A for various values of x as given in the following table

a water surf	ace area A for	various values o	t x as given in ti	ie following tau	
	10	11	12	13	14
x(ft)	950	1070	1200	1350	1530
A(sq. ft)	950	1070		-	()

If t denotes time in minutes, the rate of fall of the surface is given by $\frac{dx}{dt} = -48\left(\frac{x}{A}\right)$ Estimate

the time taken for the water level to fall from 14 to 10 ft above the sluices using Simpson's $\frac{3}{8}$ rule

BENGALURU CITY UNIVERSITY

V SEMESTER B.Sc , MATHEMATICS ,PAPER - 5 (CBCS 2020 onwards)

Model Paper 2

Max marks: 70 Time: 3 hrs $2 \times 5 = 10$ I. Answer any FIVE questions

- 1). Define Commutative Ring and Ring with zero devisors with an example.
- 2) Define left ideal and right ideal of a Ring (R,+,,)
- 3). Define Homomorphism of rings
- 4). State Isoperimetric problem in Calculus of variations.
- 5). If u, v are functions of x, y, y' prove that $\delta(uv) = u\delta v + v\delta u$
- 6) Prove that $\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right) (1 + \Delta)^{\frac{1}{2}} = 2 + \Delta$.
- 7) Write Newton Gregory forward interpolation formula.
- 8) Write Lagrange's inverse interpolation formula for unequal intervals

II. Answer any TWO questions

 $2 \times 5 = 10$

- 9). Prove that every field is an Integral Domain.
- 10). Show that the set of all real numbers of the form $a+b\sqrt{3}$ where a,b are integers is an Integral domain with respect to usual addition and and multiplication.
- 11). If R is a commutative Ring and $a \in R$, then $Ra = \{ra, r \in R\}$ is an ideal of R

III. Answer any TWO questions

 $2 \times 5 = 10$

- 12). Show that the extremal of the functional $\int_{x_1}^{x_2} \sqrt{y(1+{y'}^2)} dx$ is a parabola
- 13). Prove that the shortest distance between two points in a plane is along a straight line joining them.
- 14) Find the extremal of the functional $\int_0^1 (y'^2 + x^2) dx$ subject to $\int_0^1 y dx = 2$ and having conditions y(0) = 0, y(1) = 1.

IV. Answer any THREE questions

 $3 \times 5 = 15$

15). Use the method of separation of symbols to prove

$$u_0 - u_1 + u_2 + \dots = \frac{1}{2}u_0 - \frac{1}{4}\Delta u_0 + \frac{1}{8}\Delta^2 u_0 - \dots$$

16). Find polynomial of degree 2 of the following data

	0	1	2	3	4	5	6	7
X				7	11	16	22	29

17). From the data given below, find the number of students whose weights are between 80 and 90

0-40	40-60	60-80	80-100	100-120
250	120	100	70	50

Chairman Department of Mathematics Bengaluru City University Central College Campus

	7	8	9	10
f(x)	3	1 -	1	63

19). Evaluate $\int_0^{\pi} \frac{dx}{2 + \cos x}$ using Simpson's $\frac{3^{th}}{8}$ rule.

 $3 \times 5 = 15$

- 20). If $f: R \to R'$ is an isomorphism and if R is a Ring with unity, then prove R' is also a ring with V. Answer any THREE questions unity.
- 21). Solve the variational problem $\delta \int_0^{\frac{\pi}{2}} (y^2 {y'}^2) dx = 0$, y(0) = 0, $y(\frac{\pi}{2}) = 2$
- 22). Show that the surface of revolution of a given area enclosing maximum volume is a sphere
- 23) Express $3x^3 4x^2 + 3x + 1$ is factorial notation.
- 24) Find $\int_0^6 \frac{dx}{1+x^2}$ by using Trapezoidal rule

VI. Answer any TWO questions

 $2 \times 5 = 10$

- 25) If the cost/unit distance to travel in the first quadrant $(x \ge 0, y \ge 0)$ is proportional to 1+x, find the equation of the family of curves along which travel is cheapest
- 26) The velocity V(m/sec) of a particle at a distance S(m) from a point on its linear path is given by the following table

				10	125	15
S(m) 0	2.5	5	7,5	10	17	13
(m/sec) 16	19	21	22		1/	

Estimate the time taken by the particle to traverse the distance of 15 m using Simpson's $\frac{3}{8}^{h}$ rule

27) A reservoir discharging water through sluices at a depth x below the water surface has a water surface area A for various values of x as given in the following table

		11	12	13	14
x(ft)	10	1070	1200	1350	1530

If t denotes time in minutes, the rate of fall of the surface is given by $\frac{dx}{dt} = -48\left(\frac{x}{A}\right)$ Estimate the

time taken for the water level to fall from 14 to 10 ft above the sluices using Simpson's $\frac{1}{3}$ rule

BENGALURU CITY UNIVERSITY

V SEMESTER B.Sc, MATHEMATICS, PAPER – 5 (CBCS 2020 onwards)

Model Paper 3

Time: 3 hrs

Max marks: 70

 $2 \times 5 = 10$

I. Answer any FIVE questions

1). In a Ring(R,+,.) Prove that a.(b-c)=a.b-a.c

- 2). Define the principal Ideal Ring.
- 3). Define Isomorphism of Rings.
- 4). If u, v are functions of x, y, y' and c is constant, prove that $\delta(cu) = c\delta u$
- 5). Write the Euler's formula to find the extremum of a functional $\int_{x_1}^{x_2} f(y, y') dx$
- 6). Prove that $\delta = E^{\frac{1}{2}}\nabla$
- 7). Write Lagrange's formula for unequal interval.
- 8). Write the Trapezoidal rule for numerical Integration

 $2 \times 5 = 10$

- 9). Prove that the necessary and sufficient condition for a non-empty subset S of a Ring R to be a subring are (i) $a \in S$, $b \in S \Longrightarrow a - b \in S$ and $(ii)ab \in S$.
- 10). Find all Principal ideals of the Ring $R = \{0, 1, 2, 3, 4, 5\}$ with respect to $+_6, \times_6$
- 11). Prove that a commutative ring with unity is a field if it has no proper ideals.

III. Answer any TWO questions

- 12) State and prove Euler's formula to find the extremum of a functional $\int_{x_1}^{x_2} f(x, y, y') dx$.
- 13) Find the extremal of the functional $I = \int_{x_1}^{x_2} (y'^2 y^2 + 2ysecx) dx$
- 14) Prove that the catenary is the curve which when rotated about a line generates a surface of minimum area. $3 \times 5 = 15$

IV. Answer any THREE questions

- 15). Prove that $(i)(1 + \Delta)(1 \nabla) = 1$ $(ii)\frac{\Delta}{\nabla} \frac{\nabla}{\Delta} = \Delta + \nabla$
- 16). If $y_0 = 1$, $y_1 = 11$, $y_2 = 21$, $y_3 = 28$, $y_4 = 29$ find $\Delta^4 y_0$
- 17). From following data, find y when x=84

- 10 E	60	70	80	90
x 40 50		250	276	304

18). Find f(2) using Lagrange interpolation formula

(Z) using	Lug. a	ge interpo		11
x	5	6	9	11
f(x)	12	13	14	16

Chairman

Department of Mathematics Bengaluru City University Central College Campus Bengaluru - 560 001

19). Evaluate $\int_1^4 e^{\frac{1}{x}} dx$ by using Simpson's $\frac{3^{th}}{8}$ rule

V. Answer any THREE questions

$$3 \times 5 = 15$$

- 20). State and prove Fundamental theorem of homomorphism on Rings
- 21). Find the curve through (0,1) and (1,2) along which $I = \int_0^1 (y^2 yy' + {y'}^2) dx$ is minimum.
- 22). Find the extremal of the functional $\int_0^1 (y'^2 + x^2) dx$ subject to $\int_0^1 y dx = 2$ and having conditions y(0) = 0, y(1) = 1.
- 23) Express $3x^3 + x^2 + x + 1$ is factorial notation.
- 24) Find $\int_1^5 \log_{10} x \ dx$ taking 8 sub intervals correct to four decimal places by using trapezoidal rule.

VI. Answer any TWO questions

$$2 \times 5 = 10$$

- 25) Find the plane curve of length 'l' having end points at $(x_1, y_1) & (x_2, y_2)$ such that the area under the curve (between $x = x_1 & x = x_2$) is maximum
- 26) The velocity v(km/min) of a moped which starts from rest is given at fixed intervals of time

t(1	nin) as	follows						<u> </u>	10	10	20
- ·	<u></u>	2	4	6	8	10	12	14	16	10	20
L		10	10	25	29	32	20	11	5	2	
v		10	10	2.5			L				

Estimate approximately the distance covered in 20 mins. Using Simpson's $\frac{1}{3}$ rule

27) A reservoir discharging water through sluices at a depth x below the water surface has a water surface area A for various values of x as given in the following table

		111	12	13	14
x(ft)	10	1070	1200	1350	1530
A(sq. ft)	950	10/0	1200		

If t denotes time in minutes, the rate of fall of the surface is given by $\frac{dx}{dt} = -48\left(\frac{x}{A}\right)$ Estimate the time taken for the water level to fall from 14 to 10 ft above the sluices using trapezoidal rule