BENGALURU CITY UNIVERSITY

SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 7

MODEL PAPER - 1

Time: 3 hrs Max marks: 70

Answer any five questions:

1

(5x2=10)

- 1. Prove that the set $S = \{(3, 2, -1), (0, 4, 5), (6, 4, -2)\}$ is linearly dependent in $V_3(R)$
- 2. Define basis and dimension of a finite dimensional vector space.
- 3. Write scale factors in cylindrical co-ordinates.
- **4.** Prove that in spherical co-ordinates system $\hat{e}_r \times \hat{e}_\theta = \hat{e}_\phi$.
- 5. Verify the integrability condition for $y^2dx + (x+z)^2dy + y^2dz = 0$.
- 6. Solve $\frac{dx}{z^2y} = \frac{dy}{z^2x} = \frac{dz}{xy^2}.$
- 7. Form the partial differential equation by eliminating arbitrary constant from $x^2 + y^2 = (z c)^2 \tan^2 \alpha$, where 'c' and '\alpha' are arbitrary constants.
- 8. Solve 2p + 2q = 1

II Answer any three questions:

(3x5=15)

- 1. State & prove the necessary & sufficient condition for a non-empty subset W of a vector space V (F) to be a sub space of V.
- 2. Find the dimension and basis of the subspace spanned by the vectors $\{(2,4,2),(1,-1,0),(1,2,1),(0,3,1)\}$ of $V_3(R)$.
- 3. Find the matrix of the linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x,y,z) = (x+y,2z-x) relative to the bases $B_1 = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B_2 = \{(0,1),(1,0)\}$
- **4.** Let $T:V_3(R)\to V_3(R)$ be a linear transformation such that T(1,0,0)=(1,0,2), T(0,1,0)=(1,1,0), T(0,0,1)=(1,-1,0). Find the range space, null space, rank, nullity and hence verify rank-nullity theorem.
- **5.** Find all the eigen values & corresponding eigen vectors of the linear transformation,

 $T: V_2(R) \to V_2(R)$ defined by T(x, y) = (x + 4y, 2x + 3y).

III Answer any three questions:

(3x5=15)

- 1. Show that cylindrical co-ordinate system is orthogonal curvilinear co-ordinate system.
- 2. Express the vector $\vec{f} = yz \hat{\imath} + 2x\hat{\jmath} + y\hat{k}$ in cylindrical co-ordinates & find $f_{\rho}, f_{\phi}, f_{z}$.

Department of Mathematics
Bengaluru City University
Central College Campus

- 3. Express $\vec{f} = z\hat{\imath} 2x\hat{\jmath} + y\hat{k}$ in spherical polar co-ordinates and hence find f_r, f_θ, f_ϕ .
- 4. Solve $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to the condition (i) u(0,t) = 0, $u(1,t) = 0 \ \forall t$ (ii) $u(x,0) = x - x^2$, $0 \le x \le 1$
- 5. A tightly stretched string with fixed end points x=0 and x=l is initially in a position given by $y=y_0\sin^3\left(\frac{\pi x}{\ell}\right)$, if it is released from rest from this position, find the displacement y(x,t)

IV Answer any three questions:

(3x5=15)

- 1. Verify the condition of integrability and solve 2yz dx + zx dy xy (1+z)dz = 0
- 2. Solve: $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$
- 3. Solve: x(1+y)p = y(1+x)q
- **4.** Find the complete integral of px + qy = pq by Charpit's method
- 5. Solve $(D^2 DD^1 2D^{12}) z = (y 1)e^x$

V Answer any three questions:

(3x5=15)

- 1. Find the equation of a set of curves intersecting the ellipsoids $2x^2 + 2y^2 + z^2 = a$ at right angles
- 2. Obtain the system of curves lying on the system of surfaces xz = c and satisfying the differential equation $yzdx + z^2dy + y(z+x)dz = 0$
- 3. Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ where V is the sphere having centre at the region & radius equal to 'a' by changing the variable to spherical polar co-ordinates.
- 4. Obtain the solution to one dimensional heat equation using fourier series
- 5. An insulated rod of length I has its ends A and B maintained at 0^0 C and 100^0 Crespectively until steady state conditions prevail. If B is suddenly reduced to 0^0 C and maintained at 0^0 C. Find the temperature at a distance \mathbf{x} from A at time \mathbf{t}

Charmen
Department of Mathematic
Bengman Cary Uravers
Central Collage Campo.
Bengalam Sec. 00;

BENGALURU CITY UNIVERSITY

SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 7

MODEL PAPER - 2

Time: 3 hrs

Max marks: 70

I Answer any five questions:

(5x2=10)

- 1. Prove that in any vector space V over a field F, c.0 = 0, $\forall c \in F \& 0$ being the zero vector of V
- 2. Find the eigen values and corresponding eigen vectors of the identity linear transformation
- 3. Write scale factors in spherical co-ordinates
- 4. In cylindrical co-ordinate system prove that $\hat{e}_{\phi} \cdot \hat{e}_{z} = 0$
- 5. Verify the integrability condition for (y+z)dx+(x+z)dy+(x+y)dz=0
- 6. Solve $\frac{dx}{y^2} = \frac{dy}{xz} = \frac{dz}{xy}$
- 7. Form the partial differential equation by eliminating the arbitrary function f from $z = f(x^2 y^2)$
- 8. Solve $\sqrt{p} + \sqrt{q} = 1$

II Answer any three questions:

(3x5=15)

- 9. Show that $V = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} / x, y \in R \right\}$ is a vector space over R
- 10. Find the basis and dimension of the subspace spanned by (1,-2,3),(1,-3,4),(-1,1,-2) of the vector space $V_3(R)$
- 11. Find the matrix of linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+4y,2x-3y) relative to the bases $B_1 = \{(1,0),(0,1)\}, B_2 = \{(1,3),(2,5)\}$
- 12.If $T: U \to V$ be a linear transformation then prove that (i)R(T) is a subspace of V(ii)T is one-one if and only if $N(T) = \{0\}$
- 13.State and prove rank-nullity theorem

III Answer any three questions:

(3x5=15)

- 14.Express the vector $\vec{f} = xz\hat{i} 2y\hat{j} + y^2\hat{k}$ in spherical co-ordinates and find f_c, f_θ, f_ϕ
- 15. Express the vector $\vec{f} = 2x\hat{i} 2y^2\hat{j} + xz\hat{k}$ in cylindrical co-ordinates and find f_a, f_a, f_z

Creating and Department of Mathematics Rengaluru City Times 1984 Cempus Central College Compus Congaluru - Sun (III)

16.Show that spherical co-ordinate system is orthogonal curvilinear co-ordinate system

17. Solve
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 subject to the conditions

(i)
$$u(0,t) = 0$$
, $u(l,t) = 0$, $t \ge 0$ (ii) $u(x,0) = \frac{100x}{l}$, $0 \le x \le l$

18. Solve
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 given $u(0,t) = 0$, $u(l,t) = 0$, $u(x,0) = a \sin\left(\frac{\pi x}{l}\right) and\left(\frac{\partial u}{\partial t}\right)_{t=0} = 0$

IV Answer any three questions:

(3x5=15)

19. Verify the condition of integrability and solve

$$3x^{2}dx + 3y^{2}dy - (x^{3} + y^{3} + e^{2t})dz = 0$$

20. Solve
$$\frac{dx}{x^2 - yz} = \frac{dy}{y^2 - zx} = \frac{dz}{z^2 - xy}$$

21. Solve
$$x p + y q = z$$

22. Solve
$$p^3 + q^3 = 27z$$

23. Solve
$$(D^2 - 2DD' + D'^2)z = e^{x+2y} + x^3$$

V Answer any 3 questions:

(3x5=15)

24. Find a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,0) = (1,1) & T(0,1) = (-1,2)

Prove that T maps the square with vertices (0,0),(1,0),(1,1) and (0,1) into parallelogram

- 25. Find the family of surfaces $x^2 + y^2 + 2z^2 = c$
- 26. Find the curves which satisfy the differential equation ydx + zdy ydy + xdz = 0 and which lie on the plane 2x y z = 1
- 27.Express the velocity 'v' and acceleration 'a' of a particle in cylindrical coordinates
- 28.A rod of length 'l' with insulated sides is initially at a uniform temperature 'u'. Its ends are suddenly cooled at 0° C and are kept at that temperature.

Prove that the temperature function u(x,t) is given by

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right) e^{\frac{-c^2 \pi^2 n^2 t}{l^2}}$$

Chairman
Department of Mathematics

Bengaluru City University Central College Campus

iquide Session of the Hills.

BENGALURU CITY UNIVERSITY

SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 7

MODEL PAPER - 3

Time: 3 hrs

Max marks: 70

(5x2=10)

I Answer any five questions:

1. Show that the subset $W = \{(x,y,z)/x, y, z \text{ are rational numbers}\}$ is not a subspace of $V_{+}(R)$

2. Find the matrix of linear transformation $T: V_1(R) \to V_1(R)$ defined by T(x,y) = (x,-y) with respect to the standard bases

3. In cylindrical co-ordinate system prove that $\hat{e}_{\rho} \cdot \hat{e}_{\phi} = 0$

 Write the relation between the cartesian co-ordinates and spherical coordinates of a point

5. Verify the integrability condition for $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$

6. Solve $\frac{xdx}{y^2z} = \frac{dy}{zx} = \frac{dz}{v^2}$

7. Solve $(px + qy + z)^2 = 1 + p^2 + q^2$

8. Solve $(D^2 - 4DD' + 4D'^2)z = 0$

Il Answer any three questions:

(3x5=15)

9. Find the dimension and basis of the subspace spanned by $\{(2,-3,1),(3,0,1),(0,2,1),(1,1,1)\}$ in $V_3(R)$

10.In an n-dimensional vectorspace V(F) prove that (i) any (n+1) vectors of V are linearly dependent. (ii) no set of (n-1) vectors can span V

11. Given the matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix}$ Find the linear transformation

 $T:V_2(R) \to V_3(R)$ relative to the bases $B_1 = \{(1,1),(-1,1)\}, \ B_2 = \{(1,1,1),(1,-1,1),(0,0,1)\}$

12. Find the range space, null space, rank, nullity and hence verify rank-nullity theorem for

 $T: V_3(R) \rightarrow V_2(R)$ defined by T(x, y, z) = (y - x, y - z)

13. Show that the set of all eigen vectors associated with the eigen value λ of a linear transformation T together with zero vector is a subspace of the vectorspace

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001

III Answer any three questions:

(3x5=15)

- 14.Show that the spherical co-ordinate system is an orthogonal curvilinear coordinate system
- 15.Express $\vec{f} = 3x\hat{i} 2yz\hat{j} + x^2z\hat{k}$ in cylindrical co-ordinates and find f_{ρ} , f_{ℓ} , f_{ℓ}
- 16.Express $\vec{f} = x\hat{i} + y\hat{j} + z\hat{k}$ in spherical co-ordinate system and find f_{i} , f_{0} , f_{0}

17. Solve
$$\frac{\partial u}{\partial t} = 16 \frac{\partial^2 u}{\partial x^2}$$
 given $u(0,t) = 0$, $u(1,t) = 0$, $\forall t$

$$u(x,0) = x^2 - x, 0 \le x \le 1$$

18. Solve
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 given $u(0,t) = 0$, $u(l,t) = 0$

$$u(x,0) = k(l x - x^2), \left(\frac{\partial u}{\partial t}\right)_{t=0} = 0$$

IV Answer any three questions:

(3x5=15)

19. Verify the condition for integrability and solve

$$z^{2}dx + (z^{2} - 2yz)dy + (2y^{2} - yz - zx)dz = 0$$

20. Solve
$$\frac{dx}{1+y} = \frac{dy}{1+x} = \frac{dz}{z}$$

- 21. Form the partial differential equation by eliminating arbitrary function ϕ from $lx + my + nz = \phi(x^2 + y^2 + z^2)$
- 22. Solve $x^2 p^2 + y^2 q^2 = z^2$ by taking $u = \log x$, $v = \log y$, $w = \log z$
- 23. Find the complete integral of $z^2(p^2+q^2+1)=1$ by using Charpit's method

V Answer any three questions:

(3x5=15)

- 24. Find the family of curves orthogonal to the family of surfaces $x^2 + 2y^2 + 4z^2 = c$
- 25. The vibration of an elastic string is governed by the pde $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ The length of the string is π and ends are fixed. The initial velocity is zero and the initial deflection is $u(x,0) = 2(\sin x + \sin 3x)$ Find the deflection u(x,t) of the vibrating string for t > 0
- 26.Express each of the following loci in spherical co-ordinates
 - (i) The sphere $x^2 + y^2 + z^2 = 9$
 - (ii) The cone $z^2 = 3(x^2 + y^2)$
 - (iii) The paraboloid $z = x^2 + y^2$
 - (iv) The plane z = 0
 - (v) The plane y = x
- 27. Reduce the equation r + 2s + t = 0 to canonical form
- 28. Reduce $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form

Routh

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001