BENGALURU CITY UNIVERSITY SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 8 MODEL PAPER - 1

Time: 3 hrs Max marks: 70

I Answer any 5 questions:

(5x2=10)

- 1. Show that $\arg\left(\frac{\overline{z}}{z}\right) = \frac{\pi}{2}$ represents a line through the origin.
- 2. Define continuity of f(z) at the point $z = z_0$
- 3. Prove that $f(z) = e^z$ is an analytic function.
- 4. Show that $u = e^x \sin y + x^2 y^2$ is a harmonic function
- 5. Evaluate $\oint_{c} (\overline{z})^{2} dz$ around the circle |z| = 1
- 6. Define a bilinear transformation
- 7. Find the real root of the equation $x^3 x 2 = 0$ in the interval (1.5,2) upto 2 approximations by bisection method
- 8. State formula for Runge Kutta method

II Answer any 3 questions:

(3x5=15)

- 9. Find the locus of the point z satisfying $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$
- 10. State and prove necessary condition for a function f(z) = u(x, y) + iv(x, y) to be analytic
- 11. Show that $f(z) = \cos z$ is analytic and hence prove that $f'(z) = -\sin z$
- 12. Prove that $u(x, y) = y^3 3x^2y$ is a harmonic function. Determine its harmonic conjugate
- 13. Find the analytic function f(z) = u + iv given that $u v = e^x (\cos y \sin y)$

III Answer any 3 questions:

(3x5=15)

- 14. Evaluate $\int_{(0,1)}^{(2,5)} (3x+y)dx + (2y-x)dy$ along (i) $y = x^2 + 1$ (ii) line joining
 - (0,1)&(2,5)Int
- 15. State and prove Cauchy's Integral theorem
- 16. Evaluate $\int_{c}^{\frac{\sin(\pi z^{2}) + \cos(\pi z^{2})}{(z-1)(z-2)} dz$ where c is the circle |z| = 3
- 17. Discuss the transformation $w = \sin z$
- 18. Find the bilinear transformation which maps the points

z = 1, i, -1 into w = 2, i, -2

Chairman
Department of Mathematics
Bengaluru City University
Central College Camput
Pangalory 560 001

IV Answer any 3 questions:

(3x5=15)

- 19. Using Newton-Raphson method find the real root of the equation $x^3 + 5x 11 = 0$ by performing 3 iterations only.
- 20. Solve the equations 10x+2y+z=9, x+10y-z=-22, -2x+3y+10z=22 by Gauss-Seidel method
- 21. Find the largest eigen value of the matrix $\begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ by power method
- 22. Solve $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y(0) = 1 for x = 0.1 by Euler's method in five steps
- 23. By using Runge-Kutta method solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1Compute y(0.2) by taking h = 0.2

V Answer any 3 questions:

(3x5=15)

- 24.If $w = \phi + i\psi$ represents the complex potential for an electric field and $\psi = x^2 y^2 + \frac{x}{x^2 + y^2}$ Determine the potential function ϕ and complex potential function ψ
- 25.An electrostatic field in the xy-plane is given by the potential function $\phi = 3x^2y y^3$ Find the stream function ψ and also the complex potential function ψ
- 26.If the potential function is $\log(x^2 + y^2)$ Find the flux function and complex potential function
- 27. The concentration of salt x in a homemade soap maker is given as a function of time by $\frac{dx}{dt} = 37.5 3.5x$ At the initial time, t = 0 the salt concentration in the tank is 50g/L Using Runge Kutta method with a step size of h = 1.5 min What is the salt concentration after 1.5 mins
- 28.A polluted lake has an initial concentration of a bacteria of 10^7 parts/ m^3 while the acceptable level is only 5×10^6 parts/ m^3 The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by $\frac{dC}{dt} + 0.06C = 0$, $C(0) = 10^7$ Using Euler's method and a step size of 3.5 weeks, find the concentration of the pollutant after 7 weeks.

Rolla

BENGALURU CITY UNIVERSITY SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 8 MODEL PAPER - 2

Time: 3 hrs

Max marks: 70

I Answer any 5 questions:

(5x2=10)

- 1. Show that $\left| \frac{z-2}{z+2} \right| = 3$ represents a circle
- 2. Show that $\lim_{z\to 0} \left(\frac{xy}{x^2 + v^2} \right)$ does not exist
- 3. Define harmonic function. Give an example
- 4. Verify that $u = x^2 y^2 & v = 2xy$ are the real and imaginary parts of an analytic function
- 5. State Cauchy's inequality
- 6. Find the fixed points of the bilinear transformation $w = \frac{3z-4}{z-1}$
- 7. Write Newton-Raphson iterative formula
- 8. Using power method find the largest eigen value of $\begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}$. Do 3 steps only

II Answer any 3 questions:

(3x5=15)

- 9. Find the locus of the point z satisfying $\arg\left(\frac{\overline{z}}{z}\right) = \frac{\pi}{2}$
- 10. Evaluate $\lim_{z \to 2z^{(n)4}} \left(\frac{z^2 4}{z^3 + z + 5} \right)$
- 11. Find the orthogonal trajectories of the families of curves $e^{-x} \cos y + x y = c$
- 12. Show that $u = e^x \sin y + x^2 y^2$ is harmonic and find its harmonic conjugate
- 13.If f(z) = u + iv is an analytic function then prove that

$$\left(\frac{\partial f(z)}{\partial x}\right)^{2} + \left(\frac{\partial f(z)}{\partial y}\right)^{2} = \left|f'(z)\right|^{2}$$

III Answer any 3 questions:

(3x5=15)

- 14. Evaluate $\int_{(0,3)}^{(2,4)} (2y+x^2) dx + (3y-x) dy$ along the curve x = 2t, $y = t^2 + 3$
- 15. State and prove Cauchy's integral formula
- 16. Evaluate $\int \frac{e^{3z}}{(z+1)^2(z-2)}$ where c:|z|=3
- 17. Discuss the transformation $w = e^{t}$
- 18. Find the bilinear transformation which maps $z = \infty, i, 0$ int o $w = 0, i, \infty$ respectively

IV Answer any 3 questions:

(3x5=15)

- 19. Using bisection method find the real root of $x^3 3x^2 + 1 = 0$ correct to 3 decimal places
- 20. Solve the equations x+y+54z=110, 27x+6y-z=85, 6x+15y+2z=7 by using Gauss-Jacobi iteration method correct to 2 decimal places
- 21. Find the largest eigen value of the matrix $\begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ by p ower method
- 22. Using Taylor series method find y at x = 0.2 correct to 3 decimal places given $\frac{dy}{dx} = x y^2 \& y(0) = 1$
- 23. Solve $\frac{dy}{dx} = x y$ by Euler's modified method with y(0) = 1 for x = 0.2 correct to 3 decimal places taking h = 0.1

V Answer any 3 questions:

(3x5=15)

- 24.In a two dimensional fluid flow, if $xy(x^2-y^2)$ represents the stream function Find the corresponding velocity function and also complex potential function
- 25. Two concentric circular cylinders of radii r_1, r_2 ($r_1 < r_2$) are kept at potentials ϕ_1 and ϕ_2 respectively. Using complex function $w = a \log z + c$ prove that the capacitance per unit length of the capacitor formed by them is $\frac{2\pi\lambda}{\log\left(\frac{r_2}{r_1}\right)}$ where
 - λ is the dielectric constant of the medium
- 26. Show that u = -wy, v = wx, w = 0 represents a possible motion of inviscid fluid. Find the stream function and sketch stream lines.
- 27.The open loop response, that is, the speed of the motor to a voltage input of 20V assuming a system without damping is $20 = 0.02 \frac{dw}{dt} + 0.06w$ If the initial speed is zero (w(0) = 0) and using Euler's method what is the speed at t = 0.8s Assume a step size of h = 0.4s
- 28.A polluted lake has an initial concentration of a bacteria of 10^7 parts/ m^3 while the acceptable level is only 5×10^6 parts/ m^3 The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by $\frac{dC}{dt} + 0.06C = 0$, $C(0) = 10^7$ Using Runge Kutta method find the concentration of the pollutant after 3.5 weeks. Take a step size of 3.5 weeks.

senting by University
and Callege Campus
Bengaluru - 560 001

BENGALURU CITY UNIVERSITY SIXTH SEMESTER, B.Sc., MATHEMATICS/PAPER- 8 MODEL PAPER – 3

Time: 3 hrs

Max marks: 70

I Answer any 5 questions:

(5x2=10)

- 1. Find the locus of the point z satisfying $|z-i| \le 3$
- 2. Evaluate $\lim_{z \to -2l} \frac{(2z+3)(z-1)}{z^2 2z + 4}$
- 3. Prove that $u = x^3 3xy^2$ is a harmonic function
- 4. Show that $f(z) = \sin x \cosh y + i \cos x \sinh y$ is analytic
- 5. Evaluate $\int_{0}^{1+t} (\overline{z})^{2} dz \quad along \quad y = x$
- 6. Define cross ratio of 4 points z_1, z_2, z_3, z_4
- 7. Find first approximation root of the equation $f(x) = x^3 x 1$ by Regula Falsi method
- 8. Find the square root of the number 45 using Newton-Raphson method

II Answer any 3 questions:

(3x5=15)

- 9. Find the locus of the point z satisfying $\arg\left(\frac{z-1+i}{z+1}\right) = \frac{\pi}{4}$
- 10. Prove with usual notations $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$, $\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$
- 11. Find the orthogonal trajectories of the family of curves $x^3y xy^3 = c$
- 12. Show that $f(z) = \log z$ is analytic and hence find f'(z)
- 13.If f(z) = u + iv is an analytic function then prove that the curves $u(x, y) = c_1 \& v(x, y) = c_2$ form two orthogonal families

III Answer any 3 questions:

(3x5=15)

- 14. Evaluate $\int_{c}^{c} (x+2y)dx + (4-2x)dy$ around the ellipse c defined by
 - $x = 4\cos\theta$, $y = 3\sin\theta$, $0 \le \theta \le 2\pi$
- 15. State and prove fundamental theorem of algebra
- 16. Evaluate $\oint_c \frac{z-4}{z(z^2+9)} dz$ where c is the circle |z|=1
- 17. Discuss the transformation $w = \sinh z$
- 18. Prove that the bilinear transformation preserves the cross ratio of 4 points

Chairman
Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru - 560 001

IV Answer any 3 questions:

(3x5=15)

- 19. Find the real root of the equation $x^3 4x + 1 = 0$ by Regula Falsi method correct to 3 decimals
- 20. Using Newton- Raphson method show that the iterative formula for

$$\frac{1}{\sqrt{N}} is \quad x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{Nx_n} \right)$$

21. Solve by Gauss-Seidel method

$$20x + 2y + 6z = 28$$
, $x + 20y + 9z = 23$, $2x - 7y - 20z = -57$

- 22. Using Taylor series method solve $\frac{dy}{dx} = x^2y 1$, y(0) = 1 find y(0.1) correct to 3 decimals taking upto 4th degree term
- 23. Using Runge-Kutta method solve $\frac{dy}{dx} = \frac{1}{x+y}$, y(0.4) = 1 at x = 0.5 correct to 3 decimals

V Answer any 3 questions:

(3x5=15)

- 24.A two dimensional flow field is given by $\psi = xy$ Show that the flow is irrotational. Also find the velocity potential. Find the stream lines and potential lines.
- 25.Expand $\frac{1}{z+1}$ about z=1 in Taylor's series
- 26. Find the first four terms of the Taylor series expansion of complex variable function f(z) about z = 2 where $f(z) = \frac{z+1}{(z-3)(z-4)}$
- 27. Solve $\frac{dy}{dx} + 2y = 1.3e^{-x}$, y(0) = 5 with h = 0.1 find y(0.1) using Runge Kutta method
- 28. The concentration of salt \boldsymbol{x} in a homemade soap maker is given as a function of time by

 $\frac{dx}{dt} = 37.5 - 3.5x$ At the initial time t = 0 the salt concentration in the tank is 50g/L Using Euler's method and a step size of h = 1.5min what is the salt concentration after 3 min

Chairman

Department of Mathematics
Bengaluru City University
Central College Campus
Bengaluru (2000)